【總結(jié)】主要內(nèi)容平面點(diǎn)集和區(qū)域多元函數(shù)的極限多元函數(shù)連續(xù)的概念極限運(yùn)算多元連續(xù)函數(shù)的性質(zhì)多元函數(shù)概念全微分的應(yīng)用高階偏導(dǎo)數(shù)隱函數(shù)求導(dǎo)法則復(fù)合函數(shù)求導(dǎo)法則全微分形式的不變性方向?qū)?shù)全微分概念偏導(dǎo)數(shù)概念
2025-05-09 19:51
【總結(jié)】1、如圖,AB是⊙O的直徑,⊙O過(guò)BC的中點(diǎn)D,DE⊥AC,求證:DE是⊙O的切線。2、如圖,AB是⊙O的直徑,OC⊥AB于O,交⊙O于C點(diǎn),弦CD交AB于點(diǎn)F,E在AB的延長(zhǎng)線上,ED=EF。求證:DE與⊙O相切。
2024-11-29 13:51
【總結(jié)】作業(yè)課本93頁(yè)A組4,6B組2線上講師線上講師?。看蠹沂置δ_亂、累得要死の時(shí)候您別曉得過(guò)來(lái)當(dāng)差/那會(huì)兒全都收拾停當(dāng)咯您才露面/您那是打算‘邀功請(qǐng)賞’來(lái)咯?/水清雖然壹見珊瑚就頭疼別已/可是更是生怕她別管別顧地當(dāng)著月影の面開口說(shuō)起那件事情/于是趕快對(duì)月影說(shuō)道:
2025-08-16 01:03
【總結(jié)】隱函數(shù)的求導(dǎo)公式DxyzOM?xyP),(yxfz?第7章多元函數(shù)微分法及其應(yīng)用隱函數(shù)的求導(dǎo)公式2二、全微分形式不變性具有連續(xù)偏導(dǎo)數(shù),則有全微分;dddvvzuuzz??????則有全微分yyzxxzzddd??????????
2025-08-05 19:08
【總結(jié)】作業(yè)課本93頁(yè)A組4,6B組2
2024-10-19 16:23
【總結(jié)】......章末檢測(cè)一、選擇題1.已知曲線y=x2+2x-2在點(diǎn)M處的切線與x軸平行,則點(diǎn)M的坐標(biāo)是( )A.(-1,3) B.(-1,-3)C.(-2,-3)D.(-2,3)答案 B解析 ∵f′(x)=
2025-06-20 12:26
【總結(jié)】一、選擇題(每小題只有一個(gè)選項(xiàng)是正確的,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。)1.已知某函數(shù)的導(dǎo)數(shù)為y′=12(x-1),則這個(gè)函數(shù)可能是?????( )A.y=ln1-x ?B.y=ln11-xC.y=ln(1-x)????D.y=l
2025-07-26 14:27
【總結(jié)】§反函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)的求導(dǎo)法則一、反函數(shù)的導(dǎo)數(shù)設(shè)是直接函數(shù),是它的反函數(shù),假定在內(nèi)單調(diào)、可導(dǎo),而且,則反函數(shù)在間內(nèi)也是單調(diào)、可導(dǎo)的,而且(1)證明:,給以增量由在上的單調(diào)性可知于是 因直接函數(shù)在上單調(diào)、可導(dǎo),故它是連續(xù)的,且反函數(shù)在上也是連續(xù)的,
2025-06-24 03:46
【總結(jié)】1§3-3Cauchy積分公式和高階導(dǎo)數(shù)公式一、解析函數(shù)的Cauchy積分公式二、解析函數(shù)的高階導(dǎo)數(shù)定理三Δ、解析函數(shù)的實(shí)部和虛部與調(diào)和函數(shù)2.,0中一點(diǎn)為為一單連通區(qū)域設(shè)DzD,d)(0??Czzzzf一般不為零所以.)(,)(00不解析在那
2025-04-26 08:35
【總結(jié)】…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………學(xué)校:___________姓名:___________班級(jí):___________考號(hào):___________…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………絕密★啟用前2015-2016學(xué)年度???學(xué)校1月月考卷試卷副標(biāo)題
2025-03-25 00:40
【總結(jié)】AP微積分之利用微分求導(dǎo)數(shù) AP微積分作為美國(guó)大學(xué)一年級(jí)的數(shù)學(xué)課,大部分高中都會(huì)都接觸微積分,并且我國(guó)高中的數(shù)學(xué)要求高于美國(guó)。所以小編建議學(xué)習(xí)AP微積分建議跟老師學(xué)習(xí),因?yàn)樗吘故且婚T課程?! ??AP微積分課程的三大基本功:求極限,求導(dǎo)數(shù),求積分?! ??在導(dǎo)數(shù)這一部分,高中階段普遍使用導(dǎo)數(shù)規(guī)則來(lái)求。但是當(dāng)同學(xué)們學(xué)到多元微積分之后,更為有力的工具是全微分,因?yàn)樗且淮问?/span>
2025-08-04 10:38
【總結(jié)】主講教師:王升瑞高等數(shù)學(xué)第十四講2第三節(jié)一、隱函數(shù)的導(dǎo)數(shù)三、參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)二、對(duì)數(shù)求導(dǎo)法隱函數(shù)與參數(shù)方程求導(dǎo)第二章3一、隱函數(shù)的導(dǎo)數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).
2025-07-24 08:52
【總結(jié)】1、如圖的兩個(gè)圓是以O(shè)為圓心的同心圓,大圓的弦AB是小圓的切線,C為切點(diǎn)。求證:C是AB的中點(diǎn)。2、如圖,已知AB是⊙O的直徑,AD是弦,過(guò)點(diǎn)B的切線交AD的延長(zhǎng)線于C,求證:3、如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)
2024-11-29 02:41
【總結(jié)】......高數(shù)常見求導(dǎo)數(shù)題+1((1+3x+1)=.解:令t6=x+1,則dx=6t5dtt=6x+1dxx+1((1+3x+1)=6t5dtt31+t2=6t2dt1+t2=6
2025-06-26 20:48
【總結(jié)】切線的判定與計(jì)算經(jīng)典例題與訓(xùn)練題例1、如圖,已知AB是⊙O的直徑,銳角∠DAB的平分線AC交⊙O于點(diǎn)C,作CD⊥AD,垂足為D,直線CD與AB的延長(zhǎng)線交于點(diǎn)E.(1)求證:直線CD為⊙O的切線;(2)當(dāng)AB=2BE,且CE=時(shí),求AD的長(zhǎng).對(duì)應(yīng)練:如圖,AD是⊙O的弦,AB經(jīng)過(guò)圓心O,交⊙O于點(diǎn)C,∠
2025-03-24 12:27