【總結(jié)】1第八章基于數(shù)學(xué)原理的神經(jīng)網(wǎng)絡(luò)除了的多層感知器外,徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)(RadialBasisFunctionNeuralNetwork,RBF網(wǎng))是另一類常用的3層前饋網(wǎng)絡(luò),也可用于函數(shù)逼近及分類。與BP網(wǎng)相比,RBF網(wǎng)結(jié)構(gòu)更簡(jiǎn)潔,學(xué)習(xí)速度也更快。本章介紹RBF網(wǎng)的結(jié)構(gòu)、工作原理和常用學(xué)習(xí)
2025-01-08 17:06
【總結(jié)】I基于神經(jīng)網(wǎng)絡(luò)的電路故障診斷摘要電路的故障診斷和神經(jīng)網(wǎng)絡(luò)是當(dāng)今學(xué)術(shù)界的兩大熱點(diǎn)問題。本文主要是以模擬電路的故障診斷為例進(jìn)行研究。目的在于將模擬電路故障診斷與神經(jīng)網(wǎng)絡(luò)方面的最新成果相結(jié)合,探索解決模擬電路故障診斷的一條新的途徑。在簡(jiǎn)要介紹標(biāo)準(zhǔn)BP神經(jīng)網(wǎng)絡(luò)基本原理的基礎(chǔ)上,詳細(xì)說明了基于改進(jìn)BP神經(jīng)網(wǎng)絡(luò)算法的模擬電路故障診斷方法
2024-12-04 09:30
【總結(jié)】第1頁┊┊┊┊┊┊┊┊┊┊┊┊┊裝┊┊┊┊┊訂┊┊┊┊┊線┊┊┊┊┊┊
2024-11-12 15:26
【總結(jié)】基于BP神經(jīng)網(wǎng)絡(luò)模型及改進(jìn)模型對(duì)全國歷年車禍次數(shù)預(yù)測(cè)一、背景我國今年來隨著經(jīng)濟(jì)的發(fā)展,汽車需求量不斷地增加,所以全國每年的車禍次數(shù)也被越來越被關(guān)注,本文首先搜集全國歷年車禍次數(shù),接著通過這些數(shù)據(jù)利用BP神經(jīng)網(wǎng)絡(luò)模型和改進(jìn)的徑向基函數(shù)網(wǎng)絡(luò)進(jìn)行預(yù)測(cè),最后根據(jù)預(yù)測(cè)結(jié)果,分析模型的優(yōu)劣,從而達(dá)到深刻理解BP神經(jīng)網(wǎng)絡(luò)和徑向基函數(shù)網(wǎng)絡(luò)的原理及應(yīng)用。文中所用到的數(shù)據(jù)即全國歷年車禍次數(shù)來自中國
2025-06-27 18:16
【總結(jié)】基于BP神經(jīng)網(wǎng)絡(luò)的自校正PID控制研究摘要:基于反向傳播BP算法的神經(jīng)網(wǎng)絡(luò)具有很強(qiáng)的學(xué)習(xí)能力,適應(yīng)能力.本文詳細(xì)敘述了BP算法的原理,并將改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)應(yīng)用在傳統(tǒng)的PID控制中,克服了PID控制在參數(shù)的調(diào)整過程中對(duì)于系統(tǒng)模型過分依賴的缺點(diǎn).利用MATLAB仿真的結(jié)果表明基于BP神經(jīng)網(wǎng)絡(luò)的自校正控制能夠使傳
2024-11-05 23:02
【總結(jié)】湖南科技大學(xué)畢業(yè)設(shè)計(jì)(論文)題目基于神經(jīng)網(wǎng)絡(luò)的指紋識(shí)別系統(tǒng)研究作者顏金偉學(xué)院專業(yè)學(xué)號(hào)指導(dǎo)教師二〇〇年月日iii湖南科技大學(xué)畢業(yè)設(shè)計(jì)(論文)任務(wù)書院系(教研
2025-06-24 19:54
【總結(jié)】i湖南科技大學(xué)畢業(yè)設(shè)計(jì)(論文)題目基于神經(jīng)網(wǎng)絡(luò)的指紋識(shí)別系統(tǒng)研究作者顏金偉學(xué)院專業(yè)學(xué)號(hào)指導(dǎo)教師二〇〇年月日i湖南科技大學(xué)畢業(yè)設(shè)計(jì)(論文)任務(wù)書
2025-08-20 15:50
【總結(jié)】基于MATLAB的神經(jīng)網(wǎng)絡(luò)算法研究及仿真摘要:人工神經(jīng)網(wǎng)絡(luò)以其具有信息的分布存儲(chǔ)、并行處理以及自學(xué)習(xí)能力等優(yōu)點(diǎn),已經(jīng)在模式識(shí)別、信號(hào)處理、智能控制及系統(tǒng)建模等領(lǐng)域得到越來越廣泛的應(yīng)用。MATLAB中的神經(jīng)網(wǎng)絡(luò)工具箱是以人工神經(jīng)網(wǎng)絡(luò)理論為基礎(chǔ),利用MATLAB語言構(gòu)造出許多典型神經(jīng)網(wǎng)絡(luò)的傳遞函數(shù)、網(wǎng)絡(luò)權(quán)值修正規(guī)則和網(wǎng)絡(luò)訓(xùn)練方法,網(wǎng)絡(luò)的設(shè)計(jì)者可根據(jù)自己的需要調(diào)用工具箱中有關(guān)神經(jīng)網(wǎng)絡(luò)
2025-06-19 12:34
【總結(jié)】........【代碼及說明見第四頁】基于三層BP神經(jīng)網(wǎng)絡(luò)的人臉識(shí)別一、實(shí)驗(yàn)要求采用三層前饋BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)標(biāo)準(zhǔn)人臉YALE數(shù)據(jù)庫的識(shí)別。二、BP神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和學(xué)習(xí)算法實(shí)驗(yàn)中建議采用如下最簡(jiǎn)單的三層BP神經(jīng)網(wǎng)絡(luò),輸入層為,有n個(gè)神經(jīng)元節(jié)點(diǎn)
2025-06-23 21:38
【總結(jié)】I/64基于局部神經(jīng)網(wǎng)絡(luò)的電力需求預(yù)測(cè)研究摘要電力需求預(yù)測(cè)是實(shí)現(xiàn)電力系統(tǒng)安全、經(jīng)濟(jì)運(yùn)行的基礎(chǔ),對(duì)一個(gè)電力系統(tǒng)而言,提高電網(wǎng)運(yùn)行的安全性和經(jīng)濟(jì)性,改善電能質(zhì)量,都依賴于準(zhǔn)確的電力需求預(yù)測(cè)。中長(zhǎng)期電力預(yù)測(cè)可以為新發(fā)電機(jī)組的安裝以及電網(wǎng)的規(guī)劃、增容和改建等提供決策支持,是電力規(guī)劃部門的重要工作之一。本文提出基于局部神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)模型進(jìn)行電力需求預(yù)測(cè)。首先,采用模式預(yù)處理
2025-06-27 20:43
【總結(jié)】基于BP神經(jīng)網(wǎng)絡(luò)的PID控制器設(shè)計(jì)中文摘要經(jīng)典PID控制算法作為一般工業(yè)過程控制方法應(yīng)用范圍相當(dāng)廣泛,原則上講它并不依賴于被控對(duì)象的具體數(shù)學(xué)模型,但算法參數(shù)的整定卻是一件很困難的工作,更為重要的是即使參數(shù)整定完成,由于參數(shù)不具有自適應(yīng)能力,因環(huán)境的變化,PID控制對(duì)系統(tǒng)偏差的響應(yīng)變差,參數(shù)需重新整定。針對(duì)上述問題,人們一直采用模糊、神經(jīng)網(wǎng)絡(luò)等各種調(diào)整PID參數(shù)的自適應(yīng)方法,力圖克服這一難
2025-06-20 12:28
【總結(jié)】目錄摘要2關(guān)鍵詞2Abstract2Keywords2引言31BP神經(jīng)網(wǎng)絡(luò)概述3基本原理3BP算法學(xué)習(xí)過程42空氣質(zhì)量檢測(cè)模型的建立6樣本數(shù)據(jù)6收集和整理分組6輸入/輸出變量的確定及其數(shù)據(jù)的預(yù)處理6神經(jīng)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的確定7隱層
2024-11-10 04:09
【總結(jié)】第四章基于人工神經(jīng)網(wǎng)絡(luò)的軟測(cè)量方法黃福珍本章主要內(nèi)容?人工神經(jīng)網(wǎng)絡(luò)概述?BP神經(jīng)網(wǎng)絡(luò)?RBF神經(jīng)網(wǎng)絡(luò)?基于神經(jīng)網(wǎng)絡(luò)的軟測(cè)量通用模型?基于神經(jīng)網(wǎng)絡(luò)的軟測(cè)量技術(shù)應(yīng)用實(shí)例人工神經(jīng)網(wǎng)絡(luò)概述?神經(jīng)網(wǎng)絡(luò)的基本概念?神經(jīng)網(wǎng)絡(luò)的特點(diǎn)?神經(jīng)網(wǎng)絡(luò)的發(fā)展簡(jiǎn)史?神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)類型
2025-01-20 03:33
【總結(jié)】基于BP神經(jīng)網(wǎng)絡(luò)的函數(shù)擬合算法研究[摘要]人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetwork,ANN)是智能領(lǐng)域的研究熱點(diǎn),目前已經(jīng)成功地應(yīng)用到信號(hào)處理、模式識(shí)別、機(jī)器控制、專家系統(tǒng)等領(lǐng)域中。在神經(jīng)網(wǎng)絡(luò)技術(shù)中,BP神經(jīng)網(wǎng)絡(luò)因具有結(jié)構(gòu)、學(xué)習(xí)算法簡(jiǎn)單等特點(diǎn),近年來得到廣泛的關(guān)注,相關(guān)技術(shù)已經(jīng)在預(yù)測(cè)、分類等領(lǐng)域中實(shí)現(xiàn)產(chǎn)業(yè)化。本文針對(duì)經(jīng)典的函數(shù)擬合問題,以BP神經(jīng)網(wǎng)絡(luò)為工具,力求
2025-06-24 15:39
【總結(jié)】神經(jīng)網(wǎng)絡(luò)分類方法郟東耀經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)特點(diǎn)經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)模型經(jīng)網(wǎng)絡(luò)的應(yīng)用—字符識(shí)別主要內(nèi)容規(guī)模并行計(jì)算線性處理棒性組織及自適應(yīng)性能力想能力人類神經(jīng)網(wǎng)絡(luò)的特點(diǎn):
2025-05-26 18:03