freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

電路與系統(tǒng)專業(yè)畢業(yè)論文-基于圖像自動(dòng)標(biāo)注算法研究及系統(tǒng)實(shí)現(xiàn)(已修改)

2025-01-29 00:45 本頁面
 

【正文】 中文圖書分類號(hào):TP391密 級(jí):公開UDC:39學(xué) 校 代 碼:10005碩 士 學(xué) 位 論 文MASTERAL DISSERTATION論 文 題 目:基于圖像自動(dòng)標(biāo)注算法研究及系統(tǒng)實(shí)現(xiàn)論 文 作 者:安震學(xué) 科:電路與系統(tǒng)指 導(dǎo) 教 師:賈克斌論文 提交 日期:2022 年 4 月UDC:39 學(xué)校代碼: 10005中文圖書分類號(hào):TP391 學(xué) 號(hào):S202202022密 級(jí): 公開 北京工業(yè)大學(xué)工學(xué)碩士學(xué)位論文題 目 : 基于圖像自動(dòng)標(biāo)注算法研究及系統(tǒng)實(shí)現(xiàn)英文題目 : RESEARCH OF AUTOMATIC IMAGE ANNOTATION ALGORITHM AND THEIMPLEMENTATION OF SYSTEM 論文作者 : 安震學(xué)科 : 電路與系統(tǒng)研究方向 : 數(shù)字多媒體信息處理申請(qǐng)學(xué)位 : 工學(xué)碩士指導(dǎo)教師 : 賈克斌教授所 在 單 位 : 電子信息與控制工程學(xué)院答 辯 日 期 : 2022 年 6 月授予學(xué)位單位 : 北京工業(yè)大學(xué)獨(dú) 創(chuàng) 性 聲 明本人聲明所呈交的論文是我個(gè)人在導(dǎo)師指導(dǎo)下進(jìn)行的研究工作及取得的研究成果。盡我所知,除了文中特別加以標(biāo)注和致謝的地方外,論文中不包含其他人已經(jīng)發(fā)表或撰寫過的研究成果,也不包含為獲得北京工業(yè)大學(xué)或其它教育機(jī)構(gòu)的學(xué)位或證書而使用過的材料。與我一同工作的同志對(duì)本研究所做的任何貢獻(xiàn)均已在論文中作了明確的說明并表示了謝意。簽 名: 安震 日 期: 202253 關(guān)于論文使用授權(quán)的說明本人完全了解北京工業(yè)大學(xué)有關(guān)保留、使用學(xué)位論文的規(guī)定,即:學(xué)校有權(quán)保留送交論文的復(fù)印件,允許論文被查閱和借閱;學(xué)??梢怨颊撐牡娜炕虿糠謨?nèi)容,可以采用影印、縮印或其他復(fù)制手段保存論文。 (保密的論文在解密后應(yīng)遵守此規(guī)定)簽 名: 安震 導(dǎo)師簽名: 賈克斌 日 期: 202253 Abstract??III?摘 要隨著互聯(lián)網(wǎng)技術(shù)和數(shù)字圖像技術(shù)的迅猛發(fā)展,數(shù)字圖像信息成幾何級(jí)數(shù)增長。網(wǎng)絡(luò)已經(jīng)成為數(shù)字圖像信息展示的重要途徑。圖像資料直觀逼真、生動(dòng)形象,既與其他類型資源相互補(bǔ)充,更是一種獨(dú)立的信息載體。網(wǎng)絡(luò)上數(shù)以億計(jì)的圖像信息遠(yuǎn)未被人們所充分利用。如何能夠快速、準(zhǔn)確、有效地從海量數(shù)字圖像數(shù)據(jù)信息中尋找到感興趣的圖像已經(jīng)成為當(dāng)今圖像處理領(lǐng)域的重要研究題。目前雖然出現(xiàn)了很多基于內(nèi)容的圖像檢索技術(shù),并開發(fā)了相應(yīng)的檢索系統(tǒng)如WebSEEK、QBIC、Photobook、Chabot等,但是基于內(nèi)容的圖像檢索,結(jié)果往往不盡如人意。另一種圖像檢索技術(shù)是目前互聯(lián)網(wǎng)上所有主流圖像搜索引擎均采用的基于文本標(biāo)注的檢索方法?;谖谋緲?biāo)注的方式通常需要手工方式進(jìn)行圖像的語義標(biāo)注,標(biāo)注工作量大,基于文本的手工標(biāo)注方式根本無法滿足海量圖像標(biāo)注的需求。因此,基于圖像語義的自動(dòng)標(biāo)注算法的研究成為圖像檢索領(lǐng)域中一個(gè)十分重要和關(guān)鍵的技術(shù),并具有很好的研究意義和應(yīng)用前景。本文重點(diǎn)分析了當(dāng)前自動(dòng)圖像標(biāo)注的相關(guān)技術(shù),以聯(lián)合媒體相關(guān)模型圖像標(biāo)注算法為基礎(chǔ),深入分析、研究了圖像標(biāo)注中應(yīng)用到的關(guān)鍵技術(shù),如圖像分割、圖像聚類、詞間相關(guān)性的獲取等。在此基礎(chǔ)上,設(shè)計(jì)了并構(gòu)建了一個(gè)自動(dòng)圖像標(biāo)注及檢索系統(tǒng)。論文完成的主要工作包括以下幾個(gè)方面:1)實(shí)現(xiàn)了一種改進(jìn)的基于普擴(kuò)散理論的圖像分割算法。該算法以普擴(kuò)散理論為依據(jù),通過在輸入節(jié)點(diǎn)集合附近尋找特征方程的最優(yōu)解,實(shí)現(xiàn)對(duì)圖像的準(zhǔn)確分割。作為圖像自動(dòng)分割方法的一種輔助分割手段,能夠有效地提高針對(duì)復(fù)雜圖像的分割精度。2)提出了基于區(qū)域密度的RPCL圖像聚類改進(jìn)算法。該算法最大的優(yōu)勢是不僅能夠自動(dòng)確定聚類個(gè)數(shù),而且能夠自動(dòng)調(diào)整RPCL中次勝單元的學(xué)習(xí)率,進(jìn)一步優(yōu)化了圖像聚類效果。3)提出了語義相似語言模型和 CMRM 相結(jié)合的圖像自動(dòng)標(biāo)注改進(jìn)算法。該算法將語言模型引入到 CMRM 當(dāng)中,進(jìn)一步優(yōu)化了圖像自動(dòng)標(biāo)注效果。4)設(shè)計(jì)并實(shí)現(xiàn)了圖像自動(dòng)標(biāo)注及檢索系統(tǒng)。該系統(tǒng)可以實(shí)現(xiàn)對(duì)未標(biāo)注圖像進(jìn)行自動(dòng)標(biāo)注以及基于內(nèi)容的圖像檢索。關(guān)鍵詞:語言模型;圖像自動(dòng)標(biāo)注;CMRM ;圖像分割;圖像聚類; RPCLAbstractWith the rapid development of inter technology and digital imaging technology,digital image information have increased geometrically. At the same time work has bee an important approach to display digital image information. Image materials are Intuitive,lifelike and vivid,which not only plement other types of resources by each other, but also are independent carriers. Millions of image information on the work is far from being fully utilized. How to search the interesting images from the massive digital image data information quickly and accurately has bee the important research topic in the field of image processing. Now there39。s been a lot of contentbased image retrieval technology,and the corresponding retrieval systems such as WebSEEK,QBIC,Photobook,Chabot have been ing into sight,but the results of contentbased image retrieval are often unsatisfactory. Another image retrieval technology is text annotation based image retrieval which is used by all major image search engines on the inter at present. Text annotation based methods usually require semantic annotation of images manually,which bring marking heavy workload and the manual way can not meet the huge demand for image annotation. Therefore, the research on automatic annotation algorithm based on image semantic has bee extremely important and crucial in the field of image retrieval which has excellent research and application prospects.This article focuses on analyzing the related automatic image annotation technology, based on the bined mediarelated model image annotation algorithm. With deep analysis of the key technologies applied to image annotation, such as image segmentation, image clustering, correlation derivation between words and so on, an automatic image annotation and retrieval system based on semantic models is designed and built. The main work of the paper includes:1) An improved image segmentation algorithm based on general theory of spectral relaxation is proposed in this paper. The algorithm is based on the general theory of spectral relaxation,by finding optimal solutions of the characteristic equation near the input node set,to achieve an accurate segmentation of images. As a secondary segmentation of image segmentation method,it can effectively improve the accuracy of plex image segmentation.2) An improved RPCL image clustering algorithm bsed on region density is proposed, and the maximum advantage of the algorithm is not only to be able to automatically determine the number of clusters, but also can automatically adjust Abstract??V?the delearning rate in RPCL. This algorithm further optimized the image clustering effect.3) An improved semantic similarity language model based algorithm for automatic image annotation is proposed. This algorithm brings the language model to CMRM,and further optimizes the effect of image annotation.4) An automatic image annotation and retrieval system is also designed in this paper. In this system auto annotation and contentbased image retrieval can be processed to unannotated images.Keywords: language model,image automatic annotation,CMRM ,image segmentation,image clustering,RPCL目 錄 I 目 錄摘 要 .............................................................................................................................IABSTRACT.................................................................................................................III第 1 章 緒論 ................................................................................................................1 課題背景和研究意義 ........................................................................................1 研究目標(biāo)與內(nèi)容 ................................................................................................2 論文的結(jié)構(gòu)安排 ........................................................
點(diǎn)擊復(fù)制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號(hào)-1