freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx年二次函數(shù)教學(xué)反思(匯總17篇)(已修改)

2025-08-12 22:06 本頁面
 

【正文】 2023年二次函數(shù)教學(xué)反思(匯總17篇)2023年二次函數(shù)教學(xué)反思(匯總17篇)無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。范文怎么寫才能發(fā)揮它最大的作用呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。二次函數(shù)教學(xué)反思篇一這是九年級剛上完二次函數(shù)新課后的一堂復(fù)習(xí)課,本堂課的目的是通過用多種方法求二次函數(shù)的解析式,從而培養(yǎng)學(xué)生的一題多解能力及探索意識。問題:已知二次函數(shù)的圖象過點(1,0),在y軸上的截距為3,對稱軸是直線x=2,求它的函數(shù)解析式。(給學(xué)生充分的思考時間)師:哪位同學(xué)能把解法說一下?a+b+c=0c=3又因為對稱軸是x=2,所以—b/2a=2所以得a+b+c=0c=3—b/2a=2解得a=1b=—4c=3所以所求解析式為y=x2—4x+3師:兩點代入二次函數(shù)一般式必定出現(xiàn)不定式,能想到對稱軸,從而以三元一次方程組解得a,b,c,不錯!除此方法外,還有沒有其他方法,大家可以相互討論一下。(同學(xué)們開始討論,思考)a+k=04a+k=3解得a=1k=—1故所求二次函數(shù)的解析式為y=(x—2)2—1,即y=x2—4x+3師:非常好。那還有沒有其他方法,請大家再思考一下。(學(xué)生沉默一會兒,有人舉手發(fā)言)師:設(shè)得巧妙,這個函數(shù)解析式只含一個字母,這給運算帶來很大方便,很好,很善于思考。大家再想想看,是否還有其他解題途徑。(學(xué)生們又挖空心思地思考起來,終于有一學(xué)生打破沉寂)所以二次函數(shù)解析式為y=(x—1)(x—3),即y=x2—4x+3(同學(xué)們給生d以熱烈的掌聲)師:函數(shù)本身與圖形是不可分割的,能數(shù)形結(jié)合,非常不錯,用兩根式解此題,非常獨到。(至此下課時間快到,原先設(shè)計好的三題只完成一題,但看到學(xué)生的探索的可愛勁,不能按課前安排完成內(nèi)容又有何妨呢?)師:最后,請同學(xué)們想一下,通過本堂課的學(xué)習(xí),你獲得了什么?生1:我知道了求二次函數(shù)解析式方法有:一般式,頂點式,兩根式。生2:我獲得了解題的能力,今后做完一道題目,我會思考還有沒有更好的方法。1。每一個學(xué)生都有豐富的知識體驗和生活積累,每一個學(xué)生都會有各自的思維方式和解決問題的策略。而我對他們的能力經(jīng)常低估,在以往的上課過程中,總喋喋不休,深怕講漏了什么,但一堂課下來,學(xué)生收獲甚微。本堂課,我賦予學(xué)生較多的思考和交流的機會,試著讓學(xué)生成為數(shù)學(xué)學(xué)習(xí)的主人,我自己充當(dāng)了一回數(shù)學(xué)學(xué)習(xí)的組織者,沒想到取得了意想不到的效果,學(xué)生不但能用一般式,頂點式解決此題,還能深層挖掘巧妙地用兩根式解決此題,學(xué)生的潛力真是無窮。2。通過本堂課的教學(xué),我想了很多。新課程改革要求教師要有現(xiàn)代的教學(xué)觀、學(xué)生觀,才能培養(yǎng)出具有創(chuàng)新精神和實踐能力的下一代。所以教師應(yīng)當(dāng)走下“教壇”,與學(xué)生在民主、平等的氛圍中交流意見,共同探討問題。學(xué)生的主動參與是學(xué)習(xí)活動有效進(jìn)行的關(guān)鍵所在,因此教師還應(yīng)該在學(xué)生“學(xué)”上進(jìn)行改革,從學(xué)生的實際出發(fā),從學(xué)生的生活出發(fā),才能把學(xué)生從被動聽的束縛中解放出來,使學(xué)生真正成為學(xué)習(xí)的主人。本節(jié)課教師始終與學(xué)生保持著平等和相互尊重,為學(xué)生探究學(xué)習(xí)提供了前提條件。問題是無窮盡而活的,只有讓學(xué)生主動探索,才能真正地理解,鞏固知識點,從而運用知識點,即真正知其所以然。今后,我將不斷嘗試,不斷完善自身,使學(xué)生的討論和思考更有意義。二次函數(shù)教學(xué)反思篇二二次是函數(shù)是函數(shù)中的重點、難點,它比較復(fù)雜,一般來說我們研究它是先研究其本身性質(zhì)、圖象,進(jìn)而擴(kuò)展到應(yīng)用,它在現(xiàn)實中應(yīng)用較廣,我們在教學(xué)中要緊密結(jié)合實際,讓學(xué)生學(xué)有所用,在教學(xué)中應(yīng)注意以下幾個問題:(一)把握好課標(biāo)。九年義務(wù)教育初中數(shù)學(xué)教學(xué)大綱卻降低了對二次函數(shù)的教學(xué)要求,只要求學(xué)生理解二次函數(shù)和拋物線的有關(guān)概念,會用描點法畫出二次函數(shù)的圖像;會用配方法確定拋物線的頂點和對稱軸;會用待定系數(shù)法由已知圖像上三點的坐標(biāo)求二次函數(shù)的解析式。(二)把實際問題數(shù)學(xué)化。首先要深入了解實際問題的背景,了解影響問題變化的主要因素,然后在舍棄問題中的非本質(zhì)因素的基礎(chǔ)上,應(yīng)用有關(guān)知識把實際問題抽象成為數(shù)學(xué)問題,并進(jìn)而解決它。(三)函數(shù)的教學(xué)應(yīng)注意自變量與函數(shù)之間的變化對應(yīng)。函數(shù)問題是一個研究動態(tài)變化的問題,讓學(xué)生理解動態(tài)變化中自變量與函數(shù)之間的變化對應(yīng),可能更有助于學(xué)生對函數(shù)的學(xué)習(xí)。(四)二次函數(shù)的教學(xué)應(yīng)注意數(shù)形結(jié)合。要把函數(shù)關(guān)系式與其圖像結(jié)合起來學(xué)習(xí),讓學(xué)生感受到數(shù)和形結(jié)合分析解決問題的優(yōu)勢。(五)建立二次函數(shù)模型。利用二次函數(shù)來解決實際問題,重在建立二次函數(shù)模型。但是在解決最值問題時得注意,有時理論上的最大值(或最小值)不是實際生活中的最值,得考慮實際意義。(六)注重二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系。利用二次函數(shù)的圖像可以得到對應(yīng)一元二次方程的解、一元二次不等式的解集。二次函數(shù)教學(xué)反思篇三二次函數(shù)問題在整個初中階段既是重點又是難點,其應(yīng)用題綜合性比較強,知識涉及面廣,對學(xué)生能力的要求更高,因此成為教學(xué)中的重點,也成為學(xué)習(xí)的一大難點。在升學(xué)考試中占有相當(dāng)大的分值,往往又以中檔題或高檔題的形式出現(xiàn),成為中考的壓軸題。作為教師在組織教學(xué)的過程中,應(yīng)注意選擇合適的教學(xué)方法分散其難點。若采用分類教學(xué),學(xué)生易于掌握,針對不同的題型進(jìn)行訓(xùn)練,短期內(nèi)確實有利于提高學(xué)生的學(xué)習(xí)成績。但從長遠(yuǎn)看,這樣做容易使學(xué)生形成思維定勢,不利于思維能力和創(chuàng)新能力的培養(yǎng)。教師可以針對不同的學(xué)生分梯度設(shè)置不同的題型,放手讓學(xué)生自主探索,自己去感悟,疑難問題通過小組合作學(xué)習(xí)來解決,同時教師做適當(dāng)?shù)狞c撥,這樣可以激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,讓不同的學(xué)生都得到發(fā)展。我認(rèn)為初中階段應(yīng)從以下幾個方面來處理好二次函數(shù)的應(yīng)用問題:一、注重與代數(shù)式知識的類比教學(xué),觸及函數(shù)知識。現(xiàn)在人教版教材把函數(shù)提前到初二進(jìn)行教學(xué),我認(rèn)為這是很好的整合。初二的學(xué)生對基本概念還是比較難理解,但能夠要求學(xué)生有意識的去理解函數(shù)這一概念,逐步接觸函數(shù)的知識和建模思想,認(rèn)識到數(shù)學(xué)問題來源于生活應(yīng)用于生活,建模后又高于生活。不管是列代數(shù)式還是代數(shù)式的求值,只要變換一個字母或量的數(shù)值,代數(shù)式的值就隨之變化,這本身就可以培養(yǎng)學(xué)生的函數(shù)意識。二、注意在方程教學(xué)中有意識滲透函數(shù)思想。方程與函數(shù)之間具有很深的聯(lián)系。在學(xué)習(xí)方程時要有意識的打破只關(guān)注等量關(guān)系而忽略分析數(shù)量關(guān)系的弊端,這是對函數(shù)建模提供的最好的契機。教師在組織教學(xué)中,特別是應(yīng)用題教學(xué),不能只讓學(xué)生尋找等量關(guān)系,而不注重學(xué)生分析量與量、數(shù)與數(shù)之間的內(nèi)在聯(lián)系能力的培養(yǎng),從而更加大了學(xué)生學(xué)習(xí)函數(shù)的難度。不管是一元方程還是二元方程應(yīng)用題教學(xué)中,應(yīng)該訓(xùn)練學(xué)生分析問題中的量與量關(guān)系的能力,讓學(xué)生樹立只要有量就應(yīng)該也可以用字母去表示它,不要怕量多字母多,量表示好了再通過數(shù)量關(guān)系逐步縮少字母即可。這樣就為后續(xù)函數(shù)的學(xué)習(xí)做好了鋪墊。三、通過數(shù)形結(jié)合方法體驗函數(shù)建模思想。不管是長度、角度還是面積的有關(guān)計算,都應(yīng)該通過適當(dāng)變換數(shù)據(jù)來樹立函數(shù)思想。圖形具有豐富性與直觀性,圖形變化具有條件性,因此說圖形教學(xué)相比純粹數(shù)量計算教學(xué)更能夠體現(xiàn)函數(shù)思想。函數(shù)思想的建立,應(yīng)用題解題方式的定型絕不是一蹴而就的,它需要慢慢的滲透與慢慢體驗的過程。從這個意義上說,二次函數(shù)應(yīng)用題的
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號-1