【總結】計算導數(shù)教學過程:一、復習1、導數(shù)的定義;2、導數(shù)的幾何意義;3、導函數(shù)的定義;4、求函數(shù)的導數(shù)的流程圖。(1)求函數(shù)的改變量)()(xfxxfy?????(2)求平均變化率xxfxxfxy???????)()((3)取極限,得導數(shù)/y=()fx??xyx????0lim本節(jié)課我們將
2024-11-19 20:36
【總結】§2導數(shù)在實際問題中的應用實際問題中導數(shù)的意義雙基達標?限時20分鐘?1.物體運動規(guī)律是s=s(t),物體在t到t+Δt這段時間內的平均速度為().A.v=ΔsΔt=s?t+Δt?-s?t?ΔtB.v=s?Δt?ΔtC.v=limΔt→0ΔsΔt=limΔt→
2024-12-03 00:14
【總結】【成才之路】2021-2021學年高中數(shù)學導數(shù)的概念及其幾何意義練習北師大版選修1-1一、選擇題1.如果函數(shù)y=f(x)在點(3,4)處的切線與直線2x+y+1=0平行,則f′(3)等于()A.2B.-12C.-2D.12[答案]C[解析]∵切線的斜率為-2,∴f′(3)=
2024-11-28 19:11
【總結】變化率與導數(shù)第三章§3計算導數(shù)第三章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習,了解冪函數(shù)的求導方法和規(guī)律.2.掌握基本初等函數(shù)的導數(shù)公式,并能利用這些公式求基本初等函數(shù)的導數(shù).用導數(shù)定義求函數(shù)的導數(shù)和導函數(shù)概念1.用導數(shù)的定義求函數(shù)y=
2024-11-16 23:23
【總結】幾種常見函數(shù)的導數(shù)求函數(shù)的導數(shù)的方法是:00(1)()();yfxxfx?????求函數(shù)的增量00(2):()();fxxfxyxx???????求函數(shù)的增量與自變量的增量的比值0(3)()lim.xyyfxx
2024-11-17 23:34
【總結】邏輯聯(lián)結詞“或”同步練習一、選擇題1.下列語句不是命題的有()①x2-3=0②與一條直線相交的兩直線平行嗎?③3+1=5④5x-3>6.A.①③④B.①②③C.①②④D.②③④2.下列命題為簡單命題的是()A.5和10是20的約數(shù)B
2024-12-05 01:49
【總結】邏輯聯(lián)結詞“非”同步練習一、選擇題:1.有三個語句:⑴2x?;⑵210x??;⑶20,()xxR??,其中是真命題的為()A.⑴⑵B.⑴⑶C.⑵D.⑶2.下列語句中是命題的為
2024-12-05 06:34
【總結】邏輯聯(lián)結詞“且”同步練習一,選擇題:“方程|x|=1的解是x=±1”中,使用邏輯聯(lián)結詞的情況是().“或”“且”“非”()p是真命題時,命題“p且q”一定是真命題“p且q”是真命題時,命題p一定是真命題“p
【總結】【成才之路】2021-2021學年高中數(shù)學北師大版選修1-2一、選擇題1.“∵四邊形ABCD為矩形,∴四邊形ABCD的對角線相等”,以上推理省略的大前提為()A.正方形都是對角線相等的四邊形B.矩形都是對角線相等的四邊形C.等腰梯形都是對角線相等的四邊形D.矩形都是對邊平行且相等的四邊形
2024-12-03 00:17
【總結】數(shù)學命題?一、判斷與命題?1.判斷?判斷是對思維對象有所斷定的一種思維形式。這里所說的斷定,就是“肯定”或“否定”事物的某種性質或事物之間有某種關系。如:是無理數(shù);它不是一位教師。?判斷作為一種思維形式,具有兩個基本的邏輯特征:?(1)必須有斷定。
2024-11-17 15:05
【總結】第1課時導數(shù)與函數(shù)的單調性..對于函數(shù)y=x3-3x,如何判斷單調性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,設函數(shù)f(x)的定義域為I:如果對于定義域I內某個區(qū)間D上的
2024-11-19 23:17
【總結】橢圓的簡單性質同步練習一、選擇題1.下列命題是真命題的是()A.到兩定點距離之和為常數(shù)的點的軌跡是橢圓B.到定直線cax2?和定點F(c,0)的距離之比為ac的點的軌跡是橢圓C.到定點F(-c,0)和定直線cax2??的距離之比為ac(ac0)的點的軌跡是左
【總結】數(shù)學:2.1《橢圓》第一課時F2F1M只需將x,y交換位置即得橢圓的標準方程.xyo如果以橢圓的焦點所在直線為y軸,且F1、F2的坐標分別為(0,-c)和(0,c),a、b的含義都不變,那么橢圓又有怎樣的標準方程呢?如果已知橢圓的標準方程
2024-11-17 17:38
【總結】導數(shù)的概念及其幾何意義教學目標:1.導數(shù)的概念及幾何意義;2.求導的基本方法;3.導數(shù)的應用.教學重點:導數(shù)的綜合應用;教學難點:導數(shù)的綜合應用.一.知識梳理1.導數(shù)的概念及幾何意義.2.求導的基本方法①定義法:??xf?=????xxfxxfxyx????????
2024-11-19 23:16
【總結】§3計算導數(shù)雙基達標?限時20分鐘?1.曲線y=xn在x=2處的導數(shù)為12,則n等于().A.1B.2C.3D.4解析∵y′=n·xn-1,∴y′|x=2=n·2n-1=12.∴n=3.答案C2.若函數(shù)f(x)=3