【總結(jié)】《等差數(shù)列》教學(xué)設(shè)計(jì)【設(shè)計(jì)思路】1.教法①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.②分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性.③講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).2.學(xué)法?引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、水庫(kù)水位問(wèn)題
2025-08-05 01:11
【總結(jié)】Ch2-1SequencesandSummations※Sequence(數(shù)列)Def1.AsequenceisafunctionffromA?Z+(orA?N)toasetS.Weuseantodenotef(n),andcallanater
2025-04-19 18:57
【總結(jié)】精心整理等差數(shù)列的練習(xí)一、選擇題1.由確定的等差數(shù)列,當(dāng)時(shí),序號(hào)等于()A.80B.100C.90D.882.已知等差數(shù)列{},,則此數(shù)列的前11項(xiàng)的和A.44B.33C.22D.113.若正數(shù)a,b,c成公差不為零的等差數(shù)列,則()(A)成等差數(shù)列(B)成等比數(shù)列(C)成等差數(shù)列(D)成等比數(shù)列4.設(shè)為公差不為零的等差數(shù)列的前項(xiàng)和,若,則()A.15
2025-08-05 11:04
【總結(jié)】安宜高級(jí)中學(xué)盧其明(第二課時(shí))知識(shí)回顧::an=a1+(n-1)d;:(1)an-am=(n-m)d;(2)若m+n=p+q,則am+an=ap+aq。n項(xiàng)和公式:例{an}的前10項(xiàng)的和是30,前20項(xiàng)的和是100,求前30項(xiàng)的和。變題{an}的前m
2025-10-31 12:47
【總結(jié)】等差數(shù)列的前n項(xiàng)和復(fù)習(xí)數(shù)列的有關(guān)概念1…,按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,第2項(xiàng)用表示,第n項(xiàng)用表示,…,數(shù)列的一般形式可以寫(xiě)成:
2025-10-31 12:24
【總結(jié)】等差數(shù)列的通項(xiàng)公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,第2項(xiàng)用表示,…,第n項(xiàng)用表示,…,數(shù)列的一般形式可以寫(xiě)成:…
2025-10-31 00:27
【總結(jié)】等差數(shù)列的通項(xiàng)公式及應(yīng)用習(xí)題 一、單選題(每道小題3分共63分) 1.已知等差數(shù)列{an}中,a2=2,a5=8,則數(shù)列的第10項(xiàng)為 A.12B.14C.16D.18 2.已知等差數(shù)列前3項(xiàng)為-3,-1,1,則數(shù)列的第50項(xiàng)為[] A.91B.93C.95D.97 3.已知等差數(shù)列首項(xiàng)為2,末項(xiàng)為62,公差為4,則這
2025-03-25 06:56
【總結(jié)】復(fù)習(xí)回顧通項(xiàng)公式:等差數(shù)列中:前n項(xiàng)和公式:例題講解例1.求集合中元素的個(gè)數(shù),并求這些元素的和。解:代公式可得或由,即或答:集合M中共有14個(gè)元素,它們的和等于7
2025-10-31 05:34
【總結(jié)】等差數(shù)列的前n項(xiàng)和輝南縣綜合高中孟德來(lái)(1)、已知等差數(shù)列中任意兩項(xiàng),則一.復(fù)習(xí)知識(shí)點(diǎn)1、等差數(shù)列的通項(xiàng)公式:2、等差數(shù)列的性質(zhì):若則(2)、(3)、等差數(shù)列a
2025-10-31 00:28
【總結(jié)】等差數(shù)列教案設(shè)計(jì)一、教案內(nèi)容分析本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)·數(shù)學(xué)》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公
2025-04-17 08:32
【總結(jié)】????????100321:引例一德國(guó)數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆鋼管,如
2025-08-16 00:55
【總結(jié)】等差數(shù)列1.定義:或2.等差數(shù)列的通項(xiàng):或。3.等差中項(xiàng):若成等差數(shù)列,則A叫做與的等差中項(xiàng),且4.等差數(shù)列的前和:,5.等差數(shù)列的性質(zhì):(1)當(dāng)公差時(shí),等差數(shù)列的通項(xiàng)公式是關(guān)于的一次函數(shù),且斜率為公差;是關(guān)于的二次函數(shù)且常數(shù)項(xiàng)為0.(2)若公差,則為遞增等差數(shù)列,若公差,則為遞減等差數(shù)列,若公差,則為常數(shù)列。
【總結(jié)】等差數(shù)列求和教學(xué)設(shè)計(jì) 一、教學(xué)目標(biāo): 1、知識(shí)與技能 (1)初步掌握一些特殊數(shù)列求其前n項(xiàng)和的常用方法. (2)通過(guò)把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列...
2025-11-28 01:18
【總結(jié)】第一篇:等差數(shù)列的前n項(xiàng)和教案 等差數(shù)列的前n項(xiàng)和 一:教材分析 本節(jié)課內(nèi)容位于高中人教版必修五第二章第三節(jié)。它是在學(xué)習(xí)了等差數(shù)列的基礎(chǔ)上來(lái)研究和討論的,是繼等差數(shù)列之后的又一重要的概念。主要利...
2025-10-14 17:55
【總結(jié)】.等差數(shù)列的通項(xiàng)公式及應(yīng)用習(xí)題 一、單選題(每道小題3分共63分) 1.已知等差數(shù)列{an}中,a2=2,a5=8,則數(shù)列的第10項(xiàng)為 A.12B.14C.16D.18 2.已知等差數(shù)列前3項(xiàng)為-3,-1,1,則數(shù)列的第50項(xiàng)為[] A.91B.93C.95D.97 3.已知等差數(shù)列首項(xiàng)為2,末項(xiàng)為62,公差為4
2025-07-25 04:57