freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

圖像處理中消除噪聲的方法研究——學(xué)士學(xué)位畢業(yè)論文-文庫吧

2025-06-07 20:50 本頁面


【正文】 ,所以比較方便。中值濾波首先是被應(yīng)用在一維信號處理技術(shù)中,后來被二維圖像信號處理技術(shù)所應(yīng)用。在一定的條件下,可以克服線性濾波器所帶來的圖像細(xì)節(jié)模糊,而且對濾除脈沖干擾及圖像掃描噪聲最為有效。但是對一些細(xì)節(jié)多,特別是點、線、尖頂細(xì)節(jié)多的圖像不宜采用中值濾波的方法。 中值濾波的基本原理中值濾波的基本原理是把數(shù)字圖像或數(shù)字序列中一點的值用該點的一個鄰域中各點值的中值代替。設(shè)有一個一維序列,…,取窗口長度為m(m為奇數(shù)),對此序列進行中值濾波,就是從輸入序列中相繼抽出m個數(shù),…,…,…,…,其中為窗口的中心位置,再將這m個點按其數(shù)值大小排列,取其序號為正中間的那作為濾波輸出。用數(shù)學(xué)公式表示為: (1)例如:有一個序列為{0,3,4,0,7},則中值濾波為重新排序后的序列{0,0,3,4,7}中間的值為3。對于二維序列進行中值濾波時,濾波窗口也是二維的,但這種二維窗口可以有各種不同的形狀,如線狀、方形、圓形、十字形、圓環(huán)形等。二維數(shù)據(jù)的中值濾波可以表示為: (3)在實際使用窗口時,窗口的尺寸一般先用33再取55逐漸增大,直到其濾波效果滿意為止。對于有緩變的較長輪廓線物體的圖像,采用方形或圓形窗口為宜,對于包含尖頂角物體的圖像,適宜用十字形窗口。使用二維中值濾波最值得注意的是保持圖像中有效的細(xì)線狀物體。與平均濾波器相比,中值濾波器從總體上來說,能夠較好地保留原圖像中的躍變部分。 中值濾波的實現(xiàn)算法1)通過從圖像中的某個采樣窗口取出奇數(shù)個數(shù)據(jù)進行排序;2)用排序后的中值取代要處理的數(shù)據(jù)即可。中值濾波法對消除椒鹽噪音非常有效,在光學(xué)測量條紋圖像的相位分析處理方法中有特殊作用,但在條紋中心分析方法中作用不大。中值濾波在圖像處理中,常用于用來保護邊緣信息,是經(jīng)典的平滑噪聲的方法。 均值濾波均值濾波是典型的線性濾波算法,它是指在圖像上對目標(biāo)像素給一個模板,該模板包括了其周圍的臨近像素。再用模板中的全體像素的平均值來代替原來像素值。均值濾波器是一種典型的線性去噪方法,因為其運算簡單快速,同時又能夠較為有效地去除高斯噪聲。 均值濾波的原理均值濾波也稱為線性濾波,其采用的主要方法為領(lǐng)域平均法。線性濾波的基本原理是用均值代替原圖像中的各個像素值,即對待處理的當(dāng)前像素點(x,y),選擇一個模板,該模板由其近鄰的若干像素組成,求模板中所有像素的均值,再把該均值賦予當(dāng)前像素點(x,y),作為處理后圖像在該點上的灰度值u(x,y),即 u(x,y)=1/m ∑f(x,y) ①m為該模板中包含當(dāng)前像素在內(nèi)的像素總個數(shù)。 均值濾波的實現(xiàn)算法均值濾波將每個像素點的灰度值設(shè)置為以該點為中心的鄰域窗口內(nèi)的所有像素灰度值的平均值,以實現(xiàn)像素的平滑,達到圖像去噪的目的。設(shè)輸入圖像信號為f(x,y),去噪處理后的輸出圖像為g(x,y),則有g(shù)(x,y)= | f(x,y) u (x,y)| ② 通過上式可以達到消除信號噪聲的目的,但對于其中的每一個灰度值來說,都需要按照式①求取以該點中心的鄰域窗口內(nèi)所有像素的平均值,對長度為(2n+1)的信號來說,需要進行(2n+1)次加法、一次乘法、一次除法。所以說,均值計算占用了均值濾波處理的大量時間費用。 小波變換 小波變換的基本原理小波變換具有很強的去數(shù)據(jù)相關(guān)性,它能夠使信號的能量在小波域集中在一些大的小波系數(shù)中。,經(jīng)小波分解后,幅值比較大的小波系數(shù)一般以信號為主,,采用閾值的辦法可以把信號系數(shù)保留,:將含噪信號在各尺度上進行小波分解,設(shè)定一個閾值,幅值低于該閾值的小波系數(shù)置為0,高于該閾值的小波系數(shù)或者完全保留,或者做相應(yīng)的“收縮(shrinkage)”,得到去噪后的圖像. 小波變換的圖像去噪優(yōu)越性具體來說,小波去噪方法的成功主要得益于小波具有如下特點:1)低熵性。由于小波系數(shù)的稀疏分布,使得圖像經(jīng)小波變換后的熵明顯降低,多分辨率特性。由于采用了多分辨率的方法,所以小波變換可以在不同尺度上描述信號的局部特征,很好地刻畫信號非平穩(wěn)特征,如邊緣、尖峰、斷點等,可在不同分辨率下根據(jù)信號和噪聲分布的特點去噪。2)去相關(guān)特性。小波變換可以對信號去相關(guān),是信號的能量集中于少數(shù)幾個小波系數(shù)上,而噪聲能量分布于大部分小波系數(shù)上,即噪聲在變換后有白化趨勢,所以小波域比時域更利于去噪。3)選基靈活性。由于小波變換可以靈活選擇小波基,從而可針對不同的應(yīng)用對象選用不同的小波函數(shù),以獲得最佳的效果5 實驗仿真本章仿真時選取一張黑白圖片“”,并在圖片中加入兩種噪聲:高斯噪聲和椒鹽噪聲。所謂高斯噪聲是指它的概率密度函數(shù)服從高斯分布的一類噪聲。椒鹽噪聲是由圖像傳感器、傳輸信道、解碼處理等產(chǎn)生的黑白相間的亮暗點噪聲,屬于非平穩(wěn)噪聲。本章
點擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1