【正文】
er216。 Numerous carbides can be used216。 Linear kiicsVcarbide = VCDCEtching Agent:Cl2, F2 ,Br2, I2, HCl, HBr, HI,Supercritical H2O2001200oCTemperature:Carbide 2 nmCarbidePorosity = 0%Carbide Derived Carbon2 nmNanoporous CarbonPorosity 50% O. Hutchins, US Patent, 1271713 (1918). Mohun, US Patent, 3066099 (1962). Gordeev et al., . Chem. (USSR) 64, 1178 (1991). Fedorov, Russ. Chem. J. 39, 73 (1995)Y. Gogotsi, M. Yoshimura, Nature, 367, p. 628 (1994)A. Kravchik et al., Russ. J. Appl. Chem. 72, 2159 (1999)Y. Gogotsi, et al, Nature, 411, p. 283 (2022)J. Leis, et al. Carbon, 39, 2043 (2022)Positions and spatial distribution of carbon atoms in the carbide affect the structure and pore size/shape of CDC G. Yushin, A. Nikitin, Y. Gogotsi, Carbide Derived Carbon, in Nanomaterials Handbook, CRC Press (2022) Carbide Lattice – Template for CDCG. Yushin, A. Nikitin, Y. Gogotsi, in Nanomaterials Handbook, ed. by Y. Gogotsi (CRC Press, 2022) Carbide Lattice – Template for CDCTi3SiC2CDC (1200176。C) SiCCDC (1200176。C)Poresize distributions calculated using NL DFT modelAr sorption at 77 KAutosorb1Gogotsi, Y., et al., Nature Materials, v. 2, 591 (2022) dD/dT ~ nm/oC,or: +/ 10o C temperature control better than 197。 pore control.Tunable Pore Size in CDCChoice of starting material and synthesis conditions gives an almost unlimited range of porosity distributions252。 High surface area 252。 Uniform poresTi3SiC2 CDCT=300176。CSiCT=1700?C, 106 vacuumgraphitenanotubesFormation of Graphite and NanotubesZ. G. Cambaz, G. Yushin, S. Osswald, V. Mochalin, Y. Gogotsi, Carbon (2022) 46, 841 Vacuum deposition of SiC produces ordered nanostructures:Graphene, graphite or CNTsFactors affectingCDC structure:?Temperature?Crystal face?Oxygen P?Surface state (roughness)?Surface chemistry?Heating rateM. Kusunoki at al. Applied Physics Letters