【總結(jié)】求解最值問(wèn)題的幾種思路最值問(wèn)題涉及的知識(shí)面較廣,解法靈活多變,越含著豐富的數(shù)學(xué)思想方法,對(duì)發(fā)展學(xué)生的思維,.一、利用非負(fù)數(shù)的性質(zhì)在實(shí)數(shù)范圍內(nèi),顯然有,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,即的最小值為.例1形碼設(shè)、為實(shí)數(shù),求的最小值.解析==
2025-03-25 05:12
【總結(jié)】......橢圓中的常見(jiàn)最值問(wèn)題1、橢圓上的點(diǎn)P到二焦點(diǎn)的距離之積取得最大值的點(diǎn)是橢圓短軸的端點(diǎn),取得最小值的點(diǎn)在橢圓長(zhǎng)軸的端點(diǎn)。例1、橢圓上一點(diǎn)到它的二焦點(diǎn)的距離之積為,則取得的最大值時(shí),P點(diǎn)的坐標(biāo)是
2025-03-25 04:50
【總結(jié)】望城一中數(shù)學(xué)教研組嚴(yán)文鴛2022年12月1.教材、考綱分析2.歷年試題分析3.高考命題趨勢(shì)分析4.典型例題分析圓錐曲線(xiàn)背景下的最值與定值問(wèn)題圓錐曲線(xiàn)背景下的最值與定值問(wèn)題利用“坐標(biāo)法”來(lái)研究幾何問(wèn)題是解析幾何的基本思想。對(duì)圓錐曲線(xiàn)背景下的最值與定值問(wèn)題
2025-08-01 16:32
【總結(jié)】三角函數(shù)的最值問(wèn)題溫州第二高級(jí)中學(xué)例1:解:例2:解:例3:解:例4
2024-11-06 19:16
【總結(jié)】二次函數(shù)的復(fù)習(xí)應(yīng)用------最值問(wèn)題福州第十五中學(xué)蔡建民2020年05月22日一、復(fù)習(xí):在下列各范圍內(nèi)求函數(shù)的最值:(1)x為全體實(shí)數(shù)(2)1≤x≤2(3)-2≤x≤2322???xxyO-2
2025-09-20 15:47
【總結(jié)】最值問(wèn)題“最值”問(wèn)題大都?xì)w于兩類(lèi)基本模型:Ⅰ、歸于函數(shù)模型:即利用一次函數(shù)的增減性和二次函數(shù)的對(duì)稱(chēng)性及增減性,確定某范圍內(nèi)函數(shù)的最大或最小值Ⅱ、歸于幾何模型,這類(lèi)模型又分為兩種情況:(1)歸于“兩點(diǎn)之間的連線(xiàn)中,線(xiàn)段最短”。凡屬于求“變動(dòng)的兩線(xiàn)段之和的最小值”時(shí),大都應(yīng)用這一模型。(2)歸于“三角形兩邊之差小于第三邊”凡屬于求“變動(dòng)的兩線(xiàn)段之差的最大值”時(shí),大
2025-04-04 03:48
【總結(jié)】初中幾何最值問(wèn)題例題精講一、三點(diǎn)共線(xiàn)1、構(gòu)造三角形【例1】在銳角中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),得到△A1BC1.點(diǎn)E為線(xiàn)段AB中點(diǎn),點(diǎn)P是線(xiàn)段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線(xiàn)段EP1長(zhǎng)度的最大值與最小值.【鞏固】以平面上一點(diǎn)O為直角頂點(diǎn),
2025-03-24 12:33
【總結(jié)】幾何最值問(wèn)題(講義)l解決幾何最值問(wèn)題的通常思路_______________________,_______________________,__________________是解決幾何最值問(wèn)題的理論依據(jù),___________________________是解決最值問(wèn)題的關(guān)鍵.通過(guò)轉(zhuǎn)化減少變量,向三個(gè)定理靠攏進(jìn)而解決問(wèn)題;直接調(diào)用基本模型也是解決幾何最值問(wèn)題的高效手段.
2025-03-24 12:12
【總結(jié)】專(zhuān)題 最值問(wèn)題【考點(diǎn)聚焦】考點(diǎn)1:向量的概念、向量的加法和減法、向量的坐標(biāo)運(yùn)算、平面向量的數(shù)量積.考點(diǎn)2:解斜三角形.考點(diǎn)3:線(xiàn)段的定比分點(diǎn)、平移.考點(diǎn)4:向量在平面解析幾何、三角、復(fù)數(shù)中的運(yùn)用.考點(diǎn)5:向量在物理學(xué)中的運(yùn)用.【自我檢測(cè)】1、求函數(shù)最值的方法:配方法,單調(diào)性法,均值不等式法,導(dǎo)數(shù)法,判別式法,三角函數(shù)有界性,圖象法, 2、求幾類(lèi)重要函數(shù)
2025-08-04 10:11
【總結(jié)】范文范例參考專(zhuān)題24解三角形中的最值、范圍問(wèn)題解三角形問(wèn)題是高考高頻考點(diǎn),命題大多放在解答題的第一題,主要利用三角形的內(nèi)角和定理,正、余弦定理、三角形面積公式等知識(shí)解題,解題時(shí)要靈活利用三角形的邊角關(guān)系進(jìn)行“邊轉(zhuǎn)角”“角轉(zhuǎn)邊”,另外要注意三者的關(guān)系.高考中經(jīng)常將三角變換與解三角形知識(shí)綜合起來(lái)命題,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式
2025-03-24 05:51
【總結(jié)】 方法技巧第九節(jié) 圓錐曲線(xiàn)的綜合問(wèn)題 最新考綱 考情分析 、拋物線(xiàn)的位置關(guān)系的思想方法. 2.了解圓錐曲線(xiàn)的簡(jiǎn)單應(yīng)用. 3.理解數(shù)形結(jié)合的思想. 、拋物線(xiàn)的位置關(guān)系是近幾年北京朝陽(yáng)期...
2025-04-03 03:00
【總結(jié)】極限法(特殊值法)在物理高考中的應(yīng)用“極限法”是一種特殊的方法,它的特點(diǎn)是運(yùn)用題中的隱含條件,或已有的概念,性質(zhì),對(duì)選項(xiàng)中的干擾項(xiàng)進(jìn)行逐個(gè)排除,最終達(dá)到選出正確答案的目的。極限法在物理解題中有比較廣泛的應(yīng)用,將貌似復(fù)雜的問(wèn)題推到極端狀態(tài)或極限值條件下進(jìn)行分析,問(wèn)題往往變得十分簡(jiǎn)單。利用極限法可以將傾角變化的斜面轉(zhuǎn)化成平面或豎直面。可將復(fù)雜電路變成簡(jiǎn)單電路,可將運(yùn)動(dòng)物體視為靜止物體,可將
2025-06-07 19:45
【總結(jié)】解析幾何中的最值問(wèn)題一、教學(xué)目標(biāo)解析幾何中的最值問(wèn)題以直線(xiàn)或圓錐曲線(xiàn)作為背景,以函數(shù)和不等式等知識(shí)作為工具,具有較強(qiáng)的綜合性,這類(lèi)問(wèn)題的解決沒(méi)有固定的模式,其解法一般靈活多樣,且對(duì)于解題者有著相當(dāng)高的能力要求,正基于此,這類(lèi)問(wèn)題近年來(lái)成為了數(shù)學(xué)高考中的難關(guān)。二、教學(xué)重點(diǎn)方法的靈活應(yīng)用。三、教學(xué)程序1、基礎(chǔ)知識(shí)。探求解析幾何最值的方法有以下幾種。⑴函數(shù)法
2024-10-04 16:15
【總結(jié)】直線(xiàn)與圓二、弦長(zhǎng)公式:直線(xiàn)與二次曲線(xiàn)相交所得的弦長(zhǎng)1直線(xiàn)具有斜率,直線(xiàn)與二次曲線(xiàn)的兩個(gè)交點(diǎn)坐標(biāo)分別為,則它的弦長(zhǎng)注:實(shí)質(zhì)上是由兩點(diǎn)間距離公式推導(dǎo)出來(lái)的,只是用了交點(diǎn)坐標(biāo)設(shè)而不求的技巧而已(因?yàn)?,運(yùn)用韋達(dá)定理來(lái)進(jìn)行計(jì)算.2當(dāng)直線(xiàn)斜率不存在是,則.三、過(guò)兩圓C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=
2025-03-25 06:29
【總結(jié)】......圓錐曲線(xiàn)中的最值問(wèn)題一、圓錐曲線(xiàn)定義、性質(zhì)1.(文)已知F是橢圓+=1的一個(gè)焦點(diǎn),AB為過(guò)其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
2025-03-25 00:03