【正文】
m的空間留在系桿和模具之間以便模具的拆裝。這使模具的最大尺寸 為 250mm,可采用標(biāo)準(zhǔn)模具基體。并在模具基體的右上角和左下角用卡釘固定在壓板上。 模具必須與夾壓力一同設(shè)計(jì)讓夾緊力比模腔內(nèi)作用力力更高 (反應(yīng)力 ) 從而避免塑料噴濺的發(fā)生。 根據(jù)標(biāo)準(zhǔn)模具提 供的尺寸,公模板的寬和高分別為 200mm和 250mm。這些尺寸使水平地被安置的 公模板上有足夠的空間來設(shè)計(jì)雙模腔,而母模板只需留有固定澆口套的空間以便注入溶融塑料。所以,在產(chǎn)品的表面只會(huì)留下一條分型線的痕跡。在開模時(shí)產(chǎn)品和流道將在分型面同時(shí)脫落。 這套模具的澆口形式是標(biāo)準(zhǔn)澆口或側(cè)澆口。澆口是位于流道和產(chǎn)品之間的。澆口的底部被設(shè)計(jì)成只有 厚并有 20176。的斜度目的是為了更容易注入塑料。澆口的另一頭也就是溶融塑料注入的一側(cè)則有 4mm寬 。 設(shè)計(jì)這個(gè)模具時(shí),選用了截面為拋物面形式的流道,可以 只在公模板上方便的加工。但是,這種形式的流道與圓形流道相比有更多的熱量損失和廢料。這可能使熔融塑料冷卻過快。所以在設(shè)計(jì) 時(shí)應(yīng)使流道比較短且至少要有 6mm 的徑向尺寸。 材料或熔融塑料在同一溫度同一壓力下同時(shí)被送到個(gè)模腔對(duì)于流道設(shè)計(jì)來說是很重要的一點(diǎn) 。 基于這點(diǎn),模腔的布局一般都是對(duì)稱的。 另外,氣孔的設(shè)計(jì)也是模具設(shè)計(jì)中一個(gè)重要的方面。公模板和母模板的配合表面有很高的加工精度以防止注塑時(shí)泄露的發(fā)生。但是,這會(huì)使空氣被封閉在閉合模腔內(nèi)從而導(dǎo)致短射或使零件不完整 。 合適起氣孔設(shè)計(jì)可以使空氣釋放出來不會(huì)出現(xiàn)零件不 完整的現(xiàn)象。 冷卻系統(tǒng)是沿模腔長(zhǎng)度方向在模具上打出的水平孔,只起冷卻作用。在湍流情況下,水線可以充分冷卻模具。 在這個(gè)設(shè)計(jì)中,脫模系統(tǒng)只有推桿固定板、澆口套和推板。交口套的位于公模的中心,它的作用不僅是將產(chǎn)品固定在合適位置,在開模是還起到將產(chǎn)品拉出模腔的作用。因?yàn)楫a(chǎn)品非常薄,通常為 1mm,所以不需要設(shè)計(jì)其附加的推桿。模腔里的推桿反而有可能在脫模的時(shí)候在零件上推出破孔。 最后,還要根據(jù)材料的收縮率留出足夠的公差補(bǔ)償 。 8 結(jié)論 天津科技大學(xué)外文資料翻譯 11 經(jīng)過連續(xù)的測(cè)試 ,注塑模具在不同條件下檢查的氨基磺酸鎳液使用添加劑。這就 是說塑性好,硬度好和摩擦力好的層狀結(jié)構(gòu),已取得的力學(xué)性能是可以接受的。借鞋缺陷的鎳殼將部分取代環(huán)氧樹脂為核心的注塑模具,使注入的一系列中型塑料零部件達(dá)到可接受的質(zhì)量的水平。 參考資料 [1] . Rennie, . Bocking and . Ben, Electroforming of rapid prototyping mandrels for electro discharge machining electrodes, J. Mater. Process. Technol. 110 (2020), pp. 186– 196. [2] . Yarlagadda, . Ilyas and P. Chrstodoulou, Development of rapid tooling for sheet metal drawing using nickel electroforming and stereo lithography processes, J. Mater. Process. Technol. 111 (2020), pp. 286– 294. [3] J. Hart, A. Watson, Electroforming: A largely unrecognised but expanding vital industry, Interfinish 96, 14 World Congress, Birmingham, UK, 1996. [4] M. Monz243。n et al., Aplicaci243。n del electroconformado en la fabricaci243。n r225。pida de moldes de inyecci243。n, Revista de Pl225。sticos Modernos. 84 (2020), p. 557. [5] . Hamilton et al., C225。lculos de Qu237。mica Anal237。tica, McGraw Hill (1989). [6] E. Julve, Electrodeposici243。n de metales, 2020 (.). [7] A. Watson, Nickel Sulphamate Solutions, Nickel Development Institute (1989). [8] A. Watson, Additions to Sulphamate Nickel Solutions, Nickel Development Institute (1989). 天津科技大學(xué)外文資料翻譯 12 [9] J. Dini, Electrodeposition Materials Science of Coating and Substrates, Noyes Publications (1993). [10] . Judy, Magic microactuators with polysilicon flexures, Masters Report, Department of EECS, University of California, Berkeley, 1994. (cap′ . 3). 外 文 出 處 : 附 件 : A TECHNICAL NOTE ON THE CHARACTERIZATION OF ELECTROFORMED NICKEL SHELLS FOR THEIR APPLICATION TO INJECTION MOLDS —— aUniversidad de Las Palmas de Gran Canaria, Departamento de Ingenieria Mecanica, Spain Abstract The mold is an important process on the basis of the manufacturing sector, belong to the special equipment manufacturing industry in the mold and die industry. Although China has already started making the molds and the use of molds, but longterm without the formation of industry. Until the late 1980s, China39。s mold 天津科技大學(xué)外文資料翻譯 13 industry before entering the fast lane. In recent years, not only stateowned mold panies has made significant progress, foreignfunded enterprises, township (individual) mold the development of enterprises is also quite techniques of rapid prototyping and rapid tooling have been widely developed during the last years. In this article, electroforming as a procedure to make cores for plastics injection molds is analysed. Shells are obtained from models manufactured through rapid prototyping using the FDM system. The main objective is to analyze the mechanical features of electroformed nickel shells, studying different aspects related to their metallographic structure, hardness, internal stresses and possible failures, by relating these features to the parameters of production of the shells with an electroforming equipment. Finally a core was tested in an injection mold. Keywords: Electroplating。 Electroforming。 Microstructure。 Nickel 1. Introduction One of the most important challenges with which modern industry es across is to offer the consumer better products with outstanding variety and time variability (new designs). For this reason, modern industry must be more and more petitive and it has to produce with acceptable costs. There is no doubt that bining the time variable and the quality variable is not easy because they frequently condition one another。 the technological advances in the productive systems are going to permit that bination to be more efficient and feasible in a way that, for example, if it is observed the evolution of the systems and techniques of plastics injection, we arrive at the conclusion that, in fact, it takes less and less time to put a new product on the market and with higher levels of quality. The manufacturing technology of rapid tooling is, in this field, one of those technological advances that makes possible the improvements in the processes of designing and manufacturing injected parts. Rapid tooling techniques are basically posed of a collection of procedures that are going to allow us to obtain a mold of plastic parts, in small or medium series, in a short period of time and with acceptable accuracy levels. Their application is not only included in the field of making plastic injected pieces [1], [2] and [3], however, it is true that it is where they have developed more and where they find the highest output. 天津科技大學(xué)外文資料翻譯 14 This paper is included within a wider research line where it attempts to study, define, analyze, test and propose, at an industrial level, the possibility of creating cores for injection molds starting from obtaining electroformed nickel shells, taking as an initial model a prototype made in a FDM rapid prototyping equipment. It also would have to say beforehand that the electroform