freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

電氣工程及其自動化專業(yè)畢設外文翻譯--采樣數(shù)據(jù)模型預測控制-電氣類-文庫吧

2025-04-16 20:21 本頁面


【正文】 是 連續(xù)的,徑向無界,正定功能。 函數(shù) V 的 MPC 值被定義為 這里 是 為最優(yōu)控制問題 的函數(shù)值。 從( 7)我們可以知道對任意 因為 是有限的。我們得出 和 因此, ,因為 是連續(xù)的,我們得出 所有的條件,申請 barbalat 的引理 2 會見,高產(chǎn),該軌跡漸近收斂到原點。注意: 這個概念的穩(wěn)定,并不一定包括 Lyapunov 穩(wěn)定性財產(chǎn)是慣常在其他的概念,穩(wěn)定 。見 [ 8 ]為了討論 。 6 魯棒穩(wěn)定性 在過去的幾年中合成的強勁貨幣政策委員會的法律被認為是在不同的工程 [ 14 ] 。 框架下文所述是基于一個在 [ 9 ] ,延長至 timevarying 系統(tǒng)。 我們的目標是開車到某一所定的目標 θ ( ? irn )國家的非線性系統(tǒng)受界擾動 強勁的反饋貨幣政策委員 會的策略,是由多次獲得解決上線, 在每個采樣即時鈦, Min Max 的優(yōu)化問題,磷,以選取反饋 kti ,每一次使用當前措施,該國的核電廠 xti 。 在這個優(yōu)化問題,我們使用公約,如果一些約束是不是滿意,那么價值的游戲 + ∞ 。這可確保 當價值的游戲是有限的,最優(yōu)控制策略保證滿意的程度的限制,為一切可能的干擾情況。 7 有限參數(shù)的控制功能 結(jié)果的穩(wěn)定性和魯棒穩(wěn)定性,證明了用最優(yōu)控制問題所在是控制職能,選定由一個非常一般設置(一套可衡量的職能) 。這個是足夠的證明理論的穩(wěn)定結(jié)果,它甚至允許使用的結(jié)果,就 存在一個最小的解決方案,以最優(yōu)控制問題(如 [ 7 , 命題 2 ] ) 。不過, 對于執(zhí)行,使用任何優(yōu)化算法, 控制功能需要加以形容一個有限的參數(shù)數(shù)目( 所謂有限參數(shù)的控制功能) ??刂瓶蓞?shù)為分段常數(shù)控制(如 [ 13 ] ) ,多項式或樣條所描述的一個有限的數(shù)目 coeficients ,砰 砰管制(例如, [ 9 , 10 ] )等。 注意,我們是不會考慮的離散模型或動態(tài)方程。問題的離散逼近,詳細討論了如在 [ 16 ]及 [ 12 ] 。 但是,在證明穩(wěn)定,我們只是要表明,在一些點就是最優(yōu)成本(值函數(shù)) 是低于成本的使用另一受理控制。因此,只要設定可接受的控制值 U 的常數(shù)所有的時間,輕而易舉的事,但無論如何,重要的是,必然前穩(wěn)定結(jié)果如下 如果我們考慮到一套接納控制功能(包括輔警控制法)是一個有限 parameterizable設置這樣的一套受理的控制值是不斷為所有的時間,那么雙方的名義穩(wěn)定性和魯棒穩(wěn)定的結(jié)果,這里所描述的仍然有效。 舉例來說,是利用間斷的反饋控制策略榜榜類型,可以說是由少數(shù)參數(shù)等,使問題的計算 tractable 。在邦邦反饋策略, 管制的價值觀的策略是只允許在其中一個極端它的范圍。 許多控制問題感興趣的承認,一幫邦穩(wěn)定控制。 fontes 和 magni [ 9 ]描述的應用,這參數(shù) 是 一個 unicycle 移動機器人須有界擾動。 SampledData Model Predictive Control for Nonlinear TimeVarying Systems: Stability and Robustness Summary. We describe here a sampleddata Model Predictive Control framework that uses continuoustime models but the sampling of the actual state of the plant as well as the p utation of the control laws, are carried out at discrete instants of time. This framework can address a very large class of systems, nonlinear, timevarying, and nonholonomic. As in many others sampleddata Model Predictive Control schemes, Barbalat’s lemma has an important role in the proof of nominal stability results. It is argued that the generalization of Barbalat’s lemma, described here, can have also a similar role in the proof of robust stab ility results, allowing also to address a very general class of nonlinear, timevarying, nonho lonomic systems, subject to disturbances. The possibility of the framework to acmodate discontinuous feedbacks is essential to achieve both nominal stability and robust stability for such general classes of systems. 1 Introduction Many Model Predictive Control (MPC) schemes described in the literature use continuoustime models and sample the state of the plant at discrete instants of time. See . [3, 7, 9, 13] and also [6]. There are many advantages in considering a continuoustime model for the plant. Neverthe less, any implementable MPC scheme can only measure the state and solve an optimization pro blem at discrete instants of time. In all the references cited above, Barbalat’s lemma, or a modification of it, is used as an impo rtant step to prove stability of the MPC schemes. (Barbalat’s lemma is a wellknown and Power ful tool to deduce asymptotic stability of nonlinear systems, especially timevarying systems, using Lyapunovlike approaches。see . [17] for a discussion and applications). To show that an MPC strategy is stabilizing (in the nominal case), it is shown that if certain design parameters (objective function, terminal set, etc.) are conveniently selected, then the value function is mono tone decreasing. Then, applying Barbalat’s lemma, attractiveness of the trajectory of the nominal model can be established (. x(t) → 0 as t → ∞ ). This stability property can be deduced for a very general class of nonlinear systems: including timevarying systems, nonholonomic systems, systems allowing discontinuous feedbacks, etc. If, in addition, the value functionpossesses some continuity properties, then Lyapunov stability (. the trajectory stays arbitrarily close to the origin provided it starts close enough to the origin) can also be guaranteed (see . [11]). However, this last property might not be possible to achieve for
點擊復制文檔內(nèi)容
畢業(yè)設計相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1