freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)培優(yōu)易錯(cuò)試卷(含解析)之平行四邊形附詳細(xì)答案-文庫吧

2025-04-02 00:12 本頁面


【正文】 與四邊形PQMN的面積表達(dá)式后,即可求出t的值.試題解析:(1)∵△PQN與△ABC都是等邊三角形,∴當(dāng)點(diǎn)N落在邊BC上時(shí),點(diǎn)Q與點(diǎn)B重合.∴DQ=3∴2t=3.∴t=;(2)∵當(dāng)點(diǎn)N到點(diǎn)A、B的距離相等時(shí),點(diǎn)N在邊AB的中線上,∴PD=DQ,當(dāng)0<t<時(shí),此時(shí),PD=t,DQ=2t∴t=2t∴t=0(不合題意,舍去),當(dāng)≤t<3時(shí),此時(shí),PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2; 綜上所述,當(dāng)點(diǎn)N到點(diǎn)A、B的距離相等時(shí),t=2;(3)由題意知:此時(shí),PD=t,DQ=2t當(dāng)點(diǎn)M在BC邊上時(shí),∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如圖①,當(dāng)0≤t≤時(shí),S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如圖②,當(dāng)≤t≤時(shí),設(shè)MN、MQ與邊BC的交點(diǎn)分別是E、F,∵M(jìn)N=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等邊三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ與邊BC的交點(diǎn)分別是E、F,此時(shí)<t<,t=1或.考點(diǎn):幾何變換綜合題4.如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A,B的坐標(biāo)分別為(4,0),(4,3),動(dòng)點(diǎn)M,N分別從O,B同時(shí)出發(fā).以每秒1個(gè)單位的速度運(yùn)動(dòng).其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)M作MP⊥OA,交AC于P,連接NP,已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.(1)P點(diǎn)的坐標(biāo)為多少(用含x的代數(shù)式表示);(2)試求△NPC面積S的表達(dá)式,并求出面積S的最大值及相應(yīng)的x值;(3)當(dāng)x為何值時(shí),△NPC是一個(gè)等腰三角形?簡(jiǎn)要說明理由.【答案】(1)P點(diǎn)坐標(biāo)為(x,3﹣x).(2)S的最大值為,此時(shí)x=2.(3)x=,或x=,或x=.【解析】試題分析:(1)求P點(diǎn)的坐標(biāo),也就是求OM和PM的長(zhǎng),已知了OM的長(zhǎng)為x,關(guān)鍵是求出PM的長(zhǎng),方法不唯一,①可通過PM∥OC得出的對(duì)應(yīng)成比例線段來求;②也可延長(zhǎng)MP交BC于Q,先在直角三角形CPQ中根據(jù)CQ的長(zhǎng)和∠ACB的正切值求出PQ的長(zhǎng),然后根據(jù)PM=AB﹣PQ來求出PM的長(zhǎng).得出OM和PM的長(zhǎng),即可求出P點(diǎn)的坐標(biāo).(2)可按(1)②中的方法經(jīng)求出PQ的長(zhǎng),而CN的長(zhǎng)可根據(jù)CN=BC﹣BN來求得,因此根據(jù)三角形的面積計(jì)算公式即可得出S,x的函數(shù)關(guān)系式.(3)本題要分類討論:①當(dāng)CP=CN時(shí),可在直角三角形CPQ中,用CQ的長(zhǎng)即x和∠ABC的余弦值求出CP的表達(dá)式,然后聯(lián)立CN的表達(dá)式即可求出x的值;②當(dāng)CP=PN時(shí),那么CQ=QN,先在直角三角形CPQ中求出CQ的長(zhǎng),然后根據(jù)QN=CN﹣CQ求出QN的表達(dá)式,根據(jù)題設(shè)的等量條件即可得出x的值.③當(dāng)CN=PN時(shí),先求出QP和QN的長(zhǎng),然后在直角三角形PNQ中,用勾股定理求出PN的長(zhǎng),聯(lián)立CN的表達(dá)式即可求出x的值.試題解析:(1)過點(diǎn)P作PQ⊥BC于點(diǎn)Q,有題意可得:PQ∥AB,∴△CQP∽△CBA,∴∴解得:QP=x,∴PM=3﹣x,由題意可知,C(0,3),M(x,0),N(4﹣x,3),P點(diǎn)坐標(biāo)為(x,3﹣x).(2)設(shè)△NPC的面積為S,在△NPC中,NC=4﹣x,NC邊上的高為,其中,0≤x≤4.∴S=(4﹣x)x=(﹣x2+4x)=﹣(x﹣2)2+.∴S的最大值為,此時(shí)x=2.(3)延長(zhǎng)MP交CB于Q,則有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,則CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;③若CN=NP,則CN=4﹣x.∵PQ=x,NQ=4﹣2x,∵在Rt△PNQ中,PN2=NQ2+PQ2,∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.綜上所述,x=,或x=,或x=.考點(diǎn):二次函數(shù)綜合題.5.已知:如圖,在平行四邊形ABCD中,O為對(duì)角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交AD,BC于E,F(xiàn)兩點(diǎn),連結(jié)BE,DF.(1)求證:△DOE≌△BOF.(2)當(dāng)∠DOE等于多少度時(shí),四邊形BFDE為菱形?請(qǐng)說明理由.【答案】(1)證明見解析;(2)當(dāng)∠DOE=90176。時(shí),四邊形BFED為菱形,理由見解析.【解析】試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一組對(duì)邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進(jìn)而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.試題解析:(1)∵在?ABCD中,O為對(duì)角線BD的中點(diǎn),∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)當(dāng)∠DOE=90176。時(shí),四邊形BFDE為菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四邊形EBFD是平行四邊形,∵∠EOD=90176。,∴EF⊥BD,∴四邊形BFDE為菱形.考點(diǎn):平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.6.如圖,四邊形ABCD中,AD∥BC,∠A=90176。,BD=BC,點(diǎn)E為CD的中點(diǎn),射線BE交AD的延長(zhǎng)線于點(diǎn)F,連接CF.(1)求證:四邊形BCFD是菱形;(2)若AD=1,BC=2,求BF的長(zhǎng).【答案】(1)證明見解析(2)2【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵點(diǎn)E為CD的中點(diǎn),∴DE=EC,在△BCE與△FDE中,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四邊形BCDF為平行四邊形,∵BD=BC,∴四邊形BCFD是菱形;(2)∵四邊形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF==2.7.已知正方形ABCD中,E為對(duì)角線BD上一點(diǎn),過E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.(1)請(qǐng)問EG與CG存在怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;(2)將圖①中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45176。,如圖②所示,取DF中點(diǎn)G,連接EG,CG.問(1)中的結(jié)論是否仍然成立?
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1