【摘要】圓與方程唐毅課題:圓與方程課時(shí)安排:2課時(shí)一、復(fù)習(xí)目標(biāo):圓與方程[了解確定圓的幾何要素(圓心和半徑、不在同一直線上的三個(gè)點(diǎn)等).掌握?qǐng)A的標(biāo)準(zhǔn)方程與一般方程,能根據(jù)問題的條件選擇恰當(dāng)?shù)男问角髨A的方程;理解圓的標(biāo)準(zhǔn)方程與一般方程之間的關(guān)系,會(huì)進(jìn)行互化.
2024-12-29 06:00
【摘要】集合的有關(guān)概念1、集合與元素2、集合的分類3、集合元素的特性4、集合的表示方法5、常見數(shù)集及符號(hào)N、N*(N+)、Z、Q、R、{x|x=2n,n∈Z}、{x|x=2n+1,n∈Z}、RQ列舉法、描述法{x|p(x)}、圖示法有限集、無限集、空集。?確定
2024-12-07 06:23
【摘要】高中數(shù)學(xué)(必修2)教案【必修2教學(xué)計(jì)劃】時(shí)間:教參安排36節(jié),自己計(jì)劃50節(jié),實(shí)際60節(jié),機(jī)動(dòng)10節(jié)課本內(nèi)容教參安排自己上課作業(yè)處理實(shí)際用時(shí)空間幾何體2課時(shí)2022課時(shí)3031課時(shí)314
2025-05-02 12:27
【摘要】求曲線方程的步驟選系取動(dòng)點(diǎn),找等量,列方程,化簡(jiǎn)圓的定義:根據(jù)圓的定義怎樣求出圓心是C(a,b),半徑是r的圓的方程?平面內(nèi)與定點(diǎn)距離等于定長(zhǎng)的點(diǎn)的集合(軌跡)是圓,定點(diǎn)就是圓心,定長(zhǎng)就是半徑.(x-a)2+(y-b)2=r2三個(gè)獨(dú)立條件a、b、r確定一個(gè)圓的方程.1(口答)、
2024-12-07 23:33
【摘要】abcosab???0?知識(shí)回顧1.定義:平面內(nèi)兩個(gè)非零向量的數(shù)量積(內(nèi)積)的定義=向量夾角的概念:平移兩個(gè)非零向量使它們起點(diǎn)重合,所成圖形中0?≤?≤180?的角稱為兩個(gè)向量的夾角
2024-12-08 08:49
【摘要】課后練習(xí)案課前預(yù)習(xí)案課堂探究案1.2函數(shù)及其表示1.函數(shù)的概念課后練習(xí)案課前預(yù)習(xí)案課堂探究案1.理解函數(shù)的概念,能用集合與對(duì)應(yīng)的語言刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用.(難點(diǎn))2.通
2025-05-22 12:06
【摘要】第1講平面向量的概念與運(yùn)算新疆王新敞特級(jí)教師源頭學(xué)子小屋htp:/htp:/人教A版高中數(shù)學(xué)·必修章節(jié)復(fù)習(xí)特級(jí)教師王新敞源頭學(xué)子2()C行的向量0新疆王新敞特級(jí)教師源頭學(xué)子小屋htp:/htp:/人教A版高中數(shù)學(xué)
2025-06-28 12:24
【摘要】向量的應(yīng)用(二)一、填空題1.一質(zhì)點(diǎn)受到平面上的三個(gè)力F1,F(xiàn)2,F(xiàn)3(單位:牛頓)的作用而處于平衡狀態(tài),已知F1,F(xiàn)2成90°角,且F1,F(xiàn)2的大小分別為2和4,則F3的大小為________牛頓.2.用力F推動(dòng)一物體水平運(yùn)動(dòng)sm,設(shè)F與水平面的夾角為θ,則對(duì)物體所做的功為________.3
2024-12-25 00:28
【摘要】課題:平面向量復(fù)習(xí)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】通過本章的復(fù)習(xí),對(duì)知識(shí)進(jìn)行一次梳理,突出知識(shí)間的內(nèi)在聯(lián)系,提高綜合運(yùn)用向量知識(shí)解決問題的能力?!菊n前預(yù)習(xí)】1、已知向量a=(5,10),b=(3,4)??,則(1)2a+b=,a
2024-12-25 03:24
【摘要】平面向量的數(shù)量積學(xué)習(xí)目標(biāo):、夾角平面向量的數(shù)量積的定義已知兩個(gè)非零向量a和b,它們的夾角為?,我們把數(shù)量叫做a與b的數(shù)量積(或內(nèi)積),記作a·b,即?cos||||ba?c
【摘要】平面向量的數(shù)量積學(xué)法指導(dǎo)????向量的數(shù)量積?已知兩個(gè)非零向量與,它們的?夾角為θ,我們把數(shù)量叫做與的數(shù)量積(或內(nèi)積,點(diǎn)乘),ab|||cos|ab?ab||||cosaba
2024-12-07 23:32
【摘要】及坐標(biāo)表示(第2課時(shí))學(xué)習(xí)目標(biāo):(3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線.(1)理解平面向量的坐標(biāo)的概念;(2)掌握平面向量的坐標(biāo)運(yùn)算;兩個(gè)非零向量平行(共線)的充要條件????1122,,,(0)axybxyb???設(shè)當(dāng)且僅當(dāng)存在實(shí)數(shù),使?ba??//ab
【摘要】學(xué)法指導(dǎo)????向量的數(shù)量積?已知兩個(gè)非零向量與,它們的?夾角為θ,我們把數(shù)量叫做與的數(shù)量積(或內(nèi)積,點(diǎn)乘),ab|||cos|ab?ab||||cosabab???思考:向量的數(shù)量積
【摘要】第一篇:高中數(shù)學(xué)必修一2 高中數(shù)學(xué)必修一《函數(shù)的單調(diào)性》的教與學(xué)研究 1、此節(jié)課的教學(xué)流程是從學(xué)生的實(shí)際生活和所學(xué)知識(shí)出發(fā),引導(dǎo)學(xué)生通過自主探究、合作討論等方式,探究函數(shù)的單調(diào)性的概念。在此基礎(chǔ)上...
2024-10-28 15:50