【摘要】曲線與方程課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)知識(shí)與技能(1)了解曲線上的點(diǎn)與方程的解之間的一一對應(yīng)關(guān)系;(2)初步領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念;[(3)學(xué)會(huì)根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;(4)強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思
2025-01-23 00:30
【摘要】雙曲線及其標(biāo)準(zhǔn)方程(二)【學(xué)習(xí)目標(biāo)】進(jìn)一步掌握雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程.【自主學(xué)習(xí)】名稱橢圓雙曲線圖象xOyxOy定義平面內(nèi)到兩定點(diǎn)21,FF的距離的和為常數(shù)(大于21FF
2025-01-26 01:00
【摘要】雙曲線及其標(biāo)準(zhǔn)方程(一)【學(xué)習(xí)目標(biāo)】初步掌握雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程.【自主學(xué)習(xí)】:手工操作演示雙曲線的形成:(按課本52頁的做法去做)分析:(1)軌跡上的點(diǎn)是怎么來的?(2)在這個(gè)運(yùn)動(dòng)過程中,什么是不變的?2.雙曲線的定義:平面內(nèi)到兩定點(diǎn)21,FF的距離的為常數(shù)
2025-02-07 06:41
【摘要】課題曲線與方程(理科)學(xué)習(xí)目標(biāo):,了解曲線與方程的對應(yīng)關(guān)系..、圓與方程理解曲線與方程的關(guān)系;利用數(shù)形結(jié)合,直觀體會(huì)曲線上點(diǎn)的坐標(biāo)與方程解的關(guān)系.學(xué)習(xí)重點(diǎn):.結(jié)合已知的曲線及其方程實(shí)例,了解曲線與方程的對應(yīng)關(guān)系.學(xué)習(xí)難點(diǎn):利用數(shù)形結(jié)合,直觀體會(huì)曲線上點(diǎn)的坐標(biāo)與方程解的關(guān)系.學(xué)習(xí)方法:以講學(xué)稿為依托的探究式教
2025-01-21 18:59
【摘要】曲線與方程(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.理解曲線的方程、方程的曲線;2.求曲線的方程.【重點(diǎn)】理解曲線的方程、方程的曲線【難點(diǎn)】求曲線的方程一、自主學(xué)習(xí)P34~P36,找出疑惑之處復(fù)習(xí)1:畫出函數(shù)22yx?
2025-01-21 16:53
【摘要】曲線與方程(2)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.求曲線的方程的方法:待定系數(shù)法,直接法,代入法。2.通過曲線的方程,研究曲線的性質(zhì).【重點(diǎn)】求曲線的方程【難點(diǎn)】通過曲線的方程,研究曲線的性質(zhì)一、自主學(xué)習(xí)P36~P37,找出
2025-01-31 00:11
【摘要】求曲線的方程.一:直接法.例1、△ABC的頂點(diǎn)A固定,點(diǎn)A的對邊BC的長是2a,邊BC上高的長是b,邊BC沿一定直線移動(dòng),求△ABC外心的軌跡方程。1、設(shè)A,B兩點(diǎn)的坐標(biāo)分別是(-1,-1),(3,7).求線段AB的垂直平分線的方程練習(xí)40頁第2題求曲線的方程.
2025-01-20 15:21
【摘要】曲線和方程學(xué)習(xí)目標(biāo):1、了解平面直角坐標(biāo)中“曲線的方程”和“方程的曲線”含義.2、會(huì)判定一個(gè)點(diǎn)是否在已知曲線上.一、知識(shí)回顧并引題:二、自學(xué)課本7573?P并記下重點(diǎn),積極思考問題:三、自我檢測:1、到兩坐標(biāo)軸距離相等的點(diǎn)組成的直線方程是0??yx嗎?2、已
2025-02-02 14:35
【摘要】2.雙曲線的簡單幾何性質(zhì)(共2課時(shí))一、教學(xué)目標(biāo)1.了解雙曲線的簡單幾何性質(zhì),如范圍、對稱性、頂點(diǎn)、漸近線和離心率等。2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):雙曲線的幾何性質(zhì)及初步運(yùn)用。難點(diǎn):雙曲線的漸近線。三、教學(xué)過程(一)復(fù)習(xí)提問引入新課1.橢圓有哪些幾何性質(zhì),是
2025-02-10 08:44
【摘要】軌跡的“純粹性”與“完備性”“曲線的方程與方程的曲線”的定義包括兩個(gè)方面:一是曲線上點(diǎn)的坐標(biāo)都是方程的解———稱為純粹性;二是以方程的解為坐標(biāo)的點(diǎn)都在曲線上———稱為完備性.兩者缺一不可,否則就容易導(dǎo)致失誤.例1方程22(2)40xyxy?????的曲線是()A.兩個(gè)點(diǎn)B.一個(gè)圓
2025-01-23 00:26
【摘要】§雙曲線及其標(biāo)準(zhǔn)方程【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.從具體情境中抽象出雙曲線的模型2.理解雙曲線的定義;3.掌握雙曲線的標(biāo)準(zhǔn)方程.【重點(diǎn)】理解雙曲線的定義【難點(diǎn)】掌握雙曲線的標(biāo)準(zhǔn)方程一、自主學(xué)習(xí)(一)復(fù)
2025-01-31 23:00
【摘要】圓錐曲線綜合復(fù)習(xí)講義【基礎(chǔ)概念填空】橢圓1.橢圓的定義:平面內(nèi)與兩定點(diǎn)F1,F(xiàn)2的距離的和__________________的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的_________,兩焦點(diǎn)之間的距離叫做橢圓的________.:橢圓)0ba(1byax2222????的中心在______,焦點(diǎn)在_____
2025-02-02 04:03
【摘要】曲線和方程和方程的曲線的概念課堂新授yxo?M(x0,y0)X-y=0?M(x0,y0)xyo)0(2??aaxy曲線的方程與方程的曲線:課堂新授(在合)上的點(diǎn)。(合在)這個(gè)方程叫做這個(gè)曲線的方程這個(gè)曲線叫做這個(gè)方程的曲線課堂新授
2025-01-21 00:48
【摘要】曲線和方程——(1)、求第一、三象限里兩軸間夾角平分線的坐標(biāo)滿足的關(guān)系第一、三象限角平分線??點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相等x=y(或x-y=0)l得出關(guān)系:lx-y=0xy0(1)l上點(diǎn)的坐標(biāo)都是方程x-y=0的解(2)以方程x-y=0的解為坐標(biāo)的點(diǎn)都在上l曲
2025-01-21 15:25
【摘要】求曲線方程(1)曲線上點(diǎn)的坐標(biāo)都是方程F(x,y)=0的解;(2)以方程F(x,y)=0的解為坐標(biāo)的點(diǎn)都在曲線C上.曲線C叫做方程F(x,y)=0的曲線,方程F(x,y)=0叫做曲線C的方程.求曲線方程的步驟,設(shè)動(dòng)點(diǎn)M(x,y);p的點(diǎn)M的集合P={M|p(M)};p
2025-01-21 08:46