【摘要】高考遞推數(shù)列題型分類歸納解析各種數(shù)列問題在很多情形下,就是對(duì)數(shù)列通項(xiàng)公式的求解。特別是在一些綜合性比較強(qiáng)的數(shù)列問題中,數(shù)列通項(xiàng)公式的求解問題往往是解決數(shù)列難題的瓶頸。本文總結(jié)出幾種求解數(shù)列通項(xiàng)公式的方法,希望能對(duì)大家有幫助。類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例:已知數(shù)列滿足,,求。解:由條件知:分別令,代入上式得個(gè)等式累加之,即
2025-05-25 23:13
【摘要】及通項(xiàng)公式?學(xué)習(xí)目標(biāo):,理解等差數(shù)列的概念..,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題..復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)用
2025-01-12 03:51
2025-01-15 18:09
【摘要】求遞推數(shù)列通項(xiàng)公式的常用方法歸納目錄一、概述183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。
2024-12-22 20:27
【摘要】
【摘要】遞推數(shù)列通項(xiàng)公式之題根研究遞推數(shù)列通項(xiàng)公式之的題根研究055350河北隆堯一中焦景會(huì)電話13085848802[題根]數(shù)列滿足,,求通項(xiàng)公式。[分析]此為型遞推數(shù)列,構(gòu)造新數(shù)列,轉(zhuǎn)化成等比數(shù)列求解。[解答]在兩邊加1,得,則數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,得,即為所求。[規(guī)律小結(jié)]型遞推數(shù)列,當(dāng)p=1時(shí),數(shù)列為等
2024-07-18 22:59
【摘要】轉(zhuǎn)化法巧用換元法引入其他方法競(jìng)賽輔導(dǎo)-數(shù)列(二)由數(shù)列的遞推公式求通項(xiàng)公式遞推數(shù)列有關(guān)概念:①遞推公式:一個(gè)數(shù)列{}na中的第n項(xiàng)na與它前面若干項(xiàng)1na?,2na?,…,nka?(kn?)的關(guān)系式稱為遞推公式.②遞推數(shù)列:由遞推公式和
2024-09-15 19:41
【摘要】第五節(jié)數(shù)列求和基礎(chǔ)梳理數(shù)列求和的常用方法(1)公式法①直接用等差、等比數(shù)列的求和公式.②掌握一些常見的數(shù)列的前n項(xiàng)和.1+2+3+…+n=____________;1+3+5+…+(2n-1)=______.(1)2nn?n2(2)倒序相加法如果一個(gè)數(shù)列{
2025-01-15 18:12
【摘要】第四節(jié)數(shù)列的通項(xiàng)基礎(chǔ)梳理:如果數(shù)列{an}的________________之間的關(guān)系可以用一個(gè)公式來表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式.第n項(xiàng)與它的序號(hào)n2.數(shù)列的遞推公式:如果已知數(shù)列{an}的首項(xiàng)(或者前幾項(xiàng)),且任意一項(xiàng)an與an-1(或其前面的項(xiàng))之間的關(guān)系可以______________,那么
2025-01-12 08:08
【摘要】第四章數(shù)列小結(jié)1.?dāng)?shù)列的有關(guān)概念2.等差數(shù)列和等比數(shù)列3.?dāng)?shù)列的通項(xiàng)4.?dāng)?shù)列的和一.?dāng)?shù)列的有關(guān)概念②數(shù)列也可以看作是一個(gè)定義域?yàn)樽匀粩?shù)集N或N的有限子集{1,2,…n}的函數(shù)當(dāng)自變量從小到大依次取值時(shí)對(duì)應(yīng)的一列函數(shù)值,通項(xiàng)公式就是這一函數(shù)的解析式。③兩種基本數(shù)列——
2025-01-12 03:31
【摘要】會(huì)考復(fù)習(xí)系列——數(shù)列按一定次序排列的一列數(shù)通項(xiàng)公式:{an}的第n項(xiàng)an與n之間的關(guān)系式一、知識(shí)要點(diǎn)歸納2、等差數(shù)列:等比數(shù)列:1、數(shù)列:的差都等于同一個(gè)常數(shù)的數(shù)列從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的比都等于同一個(gè)常數(shù)的數(shù)列從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)二、
【摘要】第六節(jié)數(shù)列的綜合應(yīng)用基礎(chǔ)梳理1.解答數(shù)列應(yīng)用題的基本步驟(1)審題——仔細(xì)閱讀材料,認(rèn)真理解題意;(2)建模——將已知條件翻譯成數(shù)學(xué)(數(shù)列)語言,將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,弄清該數(shù)列的特征、要求是什么;(3)求解——求出該問題的數(shù)學(xué)解;(4)還原——將所求結(jié)果還原到原實(shí)際問題中.2.數(shù)列應(yīng)用題常見模型(1
【摘要】第二課時(shí)數(shù)列方法的應(yīng)用必修5第二章高中數(shù)學(xué)學(xué)業(yè)水平考試總復(fù)習(xí)數(shù)列學(xué)習(xí)目標(biāo),了解等差數(shù)列,公差、等差中項(xiàng)等概念,理解等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式.,公比、等比中項(xiàng)等概念,理解等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,關(guān)注數(shù)列方法的應(yīng)
2025-01-12 01:06