【摘要】......學習參考 橢 圓典例精析題型一 求橢圓的標準方程【例1】已知點P在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P
2025-06-04 13:13
【摘要】1 橢 圓典例精析題型一 求橢圓的標準方程【例1】已知點P在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P作長軸的垂線恰好過橢圓的一個焦點,求橢圓的方程.253【解析】故所求方程為+=1或+=1.x253y2103x210y25【點撥】(1)在求橢圓的標準方程
2025-06-04 12:54
【摘要】求解離心率的范圍問題離心率的范圍問題是高考的熱點問題,各種題型均有涉及,因聯(lián)系的知識點較多,且處理的思路和方法比較靈活,關鍵在于如何找到不等關系式,從而得到關于離心率的不等式,,本文就解決本類問題常用的處理方法和技巧加以歸納.一、【知識儲備】求離心率的方法[來源:學,科,網(wǎng)Z,X,X,K]:(1)直接求出a、c,求解e:已知標準方程或a、c易求時,可利用離心率公
2025-05-12 05:12
【摘要】解析幾何中的參數(shù)取值范圍問題例1:選題意圖:利用三角形中的公理構建不等式xy設分別是橢圓的左、右焦點,若在直線上存在點P,使線段的中垂線過點,求橢圓離心率的取值范圍.解法一:設P,F(xiàn)1P的中點Q的坐標為,則kF1P=,kQF2=.由kF1P·kQF2=-1,得y2=.因為y2≥0,但注意b2+2c2≠0,所以2c2-b2>0,
2025-05-12 00:03
【摘要】......求離心率的取值范圍策略圓錐曲線共同的性質(zhì):圓錐曲線上的點到一個定點F和到一條定直線L(F不在定直線L上)的距離之比是一個常數(shù)e。橢圓的離心率,雙曲線的離心率,拋物線的離心率。求橢圓與雙曲線離心率的范圍是圓錐曲線這一章的重點題型。下面從幾個方面淺談如何確定橢圓、雙曲線離心率e的范圍。一、利用曲線的范圍,建立不等關系
【摘要】圓錐曲線內(nèi)容梳理與常見問題類型解答寧夏銀川一中張德萍圓錐曲線是高中數(shù)學的重、難點,是每年高考的主干考點,它包含的內(nèi)容豐富、題型多樣.表12022-2022年高考全國卷對圓錐曲線的總體考查情況題型(題號/內(nèi)容)題合計試卷所占年份考卷數(shù)
2024-09-15 04:30
【摘要】與圓錐曲線有關取值范圍與最值問題一、利用圓錐曲線定義求最值二、單變量最值問題——化為函數(shù)最值
2024-09-05 09:49
【摘要】1、直線和圓錐曲線位置關系(1)位置關系判斷:△法(△適用對象是二次方程,二次項系數(shù)不為0)。其中直線和曲線只有一個公共點,包括直線和雙曲線相切及直線與雙曲線漸近線平行兩種情形;后一種情形下,消元后關于x或y方程的二次項系數(shù)為0。直線和拋物線只有一個公共點包括直線和拋物線相切及直線與拋物線對稱軸平行等兩種情況;后一種情形下,消元后關于x或y方程的二次項系數(shù)為0。(2)直線和
2024-09-01 17:02
【摘要】曲線方程及圓錐曲線典型例題解析一.知識要點1.曲線方程(1)求曲線(圖形)方程的方法及其具體步驟如下:步驟含義說明1、“建”:建立坐標系;“設”:設動點坐標。建立適當?shù)闹苯亲鴺讼担?x,y)表示曲線上任意一點M的坐標。(1)所研究的問題已給出坐標系,即可直接設點。(2)沒有給出坐標系,首先要選取適當?shù)淖鴺讼怠?、現(xiàn)
2024-09-05 09:19
【摘要】圓錐曲線中的最值及范圍問題課時考點14高三數(shù)學備課組考試內(nèi)容:橢圓、雙曲線、拋物線的幾何性質(zhì)及直線與圓錐曲線的位置關系.高考熱點:解析幾何與代數(shù)方法的綜合.熱點題型1:重要不等式求最值新題型分類例析熱點題型2:利用函數(shù)求最值熱點題型3:利用導數(shù)求最值熱點題型4:利用判別
2025-01-09 16:44
【摘要】WORD資料可編輯高三數(shù)學專題復習圓錐曲線中的最值問題和范圍的求解策略最值問題是圓錐曲線中的典型問題,它是教學的重點也是歷年高考的熱點。解決這類問題不僅要緊緊把握圓錐曲線的定義,而且要善于綜合應用代數(shù)、平幾、三角等相關知識。以下從五個方面予以闡述。一.求距離的最
2025-05-11 05:53
【摘要】.專題14圓錐曲線中的最值和范圍問題★★★高考在考什么【考題回放】1.已知雙曲線(a0,b0)的右焦點為F,若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(C)A.(1,2)B.(1,2)C.
2024-09-04 00:14
【摘要】圓錐曲線的最值、范圍問題與圓錐曲線有關的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質(zhì)、曲線與方程關系的研究,又對最值范圍問題有所青睞,它能綜合應用函數(shù)、三角、不等式等有關知識,緊緊抓住圓錐曲線的定義進行轉(zhuǎn)化,充分展現(xiàn)數(shù)形結合、函數(shù)與方程、化歸轉(zhuǎn)化等數(shù)學思想在解題中的應用,本文從下面幾個方面闡述該類題型的求解方法,以引起讀者注意.一、利用圓錐曲線定義求最值借助圓錐曲線定義將
2025-05-12 00:04
【摘要】圓錐曲線中參數(shù)范圍的求解策略方法一:利用二次方程根的判別式構造不等式若題設中給出直線(或曲線)與曲線有公共點或無公共點時,可以把直線方程(或曲線方程)與曲線方程聯(lián)立起來,消去某一個未知數(shù)得到含另一個未知數(shù)的一元二次方程,就能利用判別式建立起所含參數(shù)的不等式.例1已知雙曲線C的方程為,若直線與雙曲線C恒有兩個不同的交點A和B,且(其中O為原點),求k的取值范圍.【解析】設,
2024-08-04 15:30
【摘要】......圓錐曲線的最值、范圍問題與圓錐曲線有關的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質(zhì)、曲線與方程關系的研究,又對最值范圍問題有所青睞,它能綜合應用函數(shù)、三角、不等式等有關知識,緊緊抓住圓錐曲線的定義進行轉(zhuǎn)