【正文】
中,測力環(huán)的設(shè)計是一個關(guān)鍵。這就要求測力環(huán)很靈敏,而且測量范圍較大。通過調(diào)研和分析,確定測力環(huán)的基本形狀和結(jié)構(gòu)如圖38所示,在測力環(huán)上開方孔的目的是增加軸向應(yīng)變量,提高軸向推力測量的靈敏度。圖38是測力環(huán)的設(shè)計與參數(shù),測力環(huán)的外徑和內(nèi)徑分別為,,壁厚為t。單軸應(yīng)變片可以貼在方孔旁邊的支撐板上。由于測力環(huán)為圓柱環(huán)形體,橫截面形狀沿芯軸 y保持不變,應(yīng)變環(huán)厚度較小,且外載荷沿中面方向,所以可以將問題簡化為平面應(yīng)力問題。對于平面應(yīng)力問題,有 = 0, = 0, =0。式(34)對x,y求偏導(dǎo)可以得到: (35)根據(jù)邊界條件: (36)積分可得:,所以: (37)根據(jù)題意, ,式中為螺桿的軸為圖39測力環(huán)支撐板的橫截面積。所以: (38)將式 (35)、(38)代入式 (32) ,可以得到: (39)在式(39)中說明支撐板受力后無角應(yīng)變,仍然保持矩形。通過以上分析,可確定測力環(huán)的尺寸參數(shù)。在圖38中,取= 43mm,= 41mm, n =12,w =, =, H = 12 mm。計算可得到 12等分后對應(yīng)每等分中徑弧長為:=R=,支撐板中徑弧長為b=w=,b對應(yīng)支撐板的橫截面積為: A=bt=。取鋼的許用應(yīng)力:[σ]=100MPa,根據(jù)式(38),可得到y(tǒng)方向在許用應(yīng)力范圍內(nèi),能夠施加的最大載荷為= N,此時,產(chǎn)生的最大應(yīng)變?yōu)?=。將所測得的軸向力應(yīng)變值代入下式即可得到我們需要的實驗結(jié)果。為了驗證前面所推導(dǎo)的理論模型,繪制出了相同條件下的單一變化因素與雙螺桿磨漿機的軸向推力之間的理論關(guān)系曲線,如下圖所示:(1)加工物料為水泡棉桿;實驗時間為l分鐘。反向擠壓段螺旋的扣數(shù)為2扣;正向輸送段螺棱寬度為9mm??梢钥闯?,軸向力與反槽寬度近似成反比關(guān)系。實驗時間為1分鐘。反向擠壓段螺棱上的狹槽寬度為12mm。螺桿轉(zhuǎn)速為350rpm。圖313 反向狹槽寬度的變化對軸向力的影響圖314 正向螺棱寬度的變化對軸向力的影響由圖314可以看出,正向螺棱寬度與軸向力成拋物線關(guān)系,在正向螺棱寬度為8mm時軸向力出現(xiàn)最小值。圖315 正向輸送段螺距的變化對軸向力的影響(4)加工物料為水泡棉桿;實驗時間為1分鐘;反向擠壓段螺棱上的狹槽寬度為12mm;反向擠壓段螺旋的扣數(shù)為2扣;正向輸送段螺棱寬度為9mm;螺桿轉(zhuǎn)速為350rpm;正向輸送段螺距的變化與軸向力之間的關(guān)系曲線,如圖315所示。(5)加工物料為堿泡棉桿和堿泡木片;實驗時間為l分鐘;正向輸送段螺距為28mm;反向擠壓段螺旋的扣數(shù)為2扣;正向輸送段螺棱寬度為9mm;反向擠壓段螺棱上的狹槽寬度為12mm;螺桿轉(zhuǎn)速的變化軸向力之間的關(guān)系曲線,如圖316所示??梢钥闯?,加工物料為水泡棉桿和木片、堿泡棉桿和木片以及水泡麥稈時,在加工水泡棉桿時的軸向力的變化與理論曲線較為接近;由于在實驗的過程中,一直采用人工加送物料的進料方式,同機械進料相比人工加料速度慢且送料不均勻,對雙螺桿磨漿機動力學(xué)各個參數(shù)的測量都有一定的影響。完成的圖紙合計1張A0。所設(shè)計的齒輪參數(shù)如下表41所示:表41齒輪參數(shù)表No.mz分度圓D齒頂圓D齒根圓D實際齒寬螺旋角中心矩傳動比選擇材料熱處理精度等級1719160 22042CrMo表面淬火8272416042CrMo調(diào)質(zhì)8382212021042CrMo表面淬火8482912042CrMo調(diào)質(zhì)8582912042CrMo調(diào)質(zhì)8結(jié) 論畢業(yè)設(shè)計不僅僅是一個綜合性的設(shè)計,也不只是理論的設(shè)計,它還包括解決實際問題的方案設(shè)計,這就要求我們把理論知識的應(yīng)用與實際相結(jié)合,靈活運用。設(shè)計期間,我總結(jié)梳理過去所學(xué)的知識,綜合應(yīng)用于此次的畢業(yè)設(shè)計中,通過查閱圖書館的手冊,一步一步的完成自己的設(shè)計,有不對的地方及時改正,并學(xué)會了如何把所學(xué)的知識技能應(yīng)用于實際中,初步掌握了科學(xué)研究的方法與技巧。對今后的工作實踐十分有益。 Sons Ltd,2002. [8]于慎波,張新敏,樊鵬. 多級鍋爐給水泵徑向載荷和軸向推力實驗研究[J]. 沈陽工業(yè)大學(xué)學(xué)報,1995,17(1):44~50.[9] 沈慶根,盧奐采,高紅俐. 大型機組軸向力的在線檢測[J]. 流體機械, 1994, 22(3):33~37.[10] 姜 偉,高紅俐,楊繼隆. 給水泵軸向力監(jiān)控系統(tǒng)研究[J]. 中國機械工程, 2003,14(3):210~212.[11] 張鳳生,師忠秀,徐志良,等. 動態(tài)轉(zhuǎn)矩測量技術(shù)的研究[J]. 現(xiàn)代計量測試,1997(6):10~14.[12][J].工業(yè)計量,2001(S1):310~311.[13][M].北京:機械工業(yè)出版社,2005. 吳宗澤. 機械零件設(shè)計手冊[M]. 北京:機械工業(yè)出版.[14]陳樵鑒. Bivis法制漿機理的探討[C]. 中國造紙學(xué)會第八屆學(xué)術(shù)年會論文集(上冊),.[15]Ando Tsutomu, Ueno Kazuyuki, Taniguchi Shoji Induction pump for high temperature molten metals using rotating twisted magnetic field: Thrust measurement experiment with solid conductors[J].IEEE Transactions on Magnetics, 2002, 38 (4) : 1789~1796.英文翻譯Proceedings of the ASME 2009 International Mechanical Engineering Congress amp。D CenterHaifa, IsraelyuvalbABSTRACT Developing plex systems usually involves many activities that are based on the integration of the designer CAD models: mechanical assemblies, analysis models (CFD, FEA, Thermal, etc.), interface control, tool and jig design data, production models, mass properties, ILS, documentation, and many more. Proper management of the integrated data base can lead to cost and time savings by parallel design, updated interfaces, and minimum integration faults。 focusing on the techniques in use for building and monitoring it properly and explains the training program of the Mechanical Integrator, a person in charge over the mechanical data base and data flow. INTRODUCTION The current business and technology environment pushes the engineering methods to being more efficient, more flexible and much faster. Terms like Time To Market (TTM), Global Village and Offset Agreements are practically translated into techniques for shortening the total design time and design efforts. This is done mainly by using generic ponents and module based design where the fullsystem is divided into subsystems and work packages, that are simultaneously treated by various design groups using various methods and tools at various global locations and cultures. This approach has benefits, like parallel design (which reduces total project TTM), better maintainability by module replacements, better testability of subsystems and much more. On the other hand, efficient and accurate integration ability is being more critical then ever. The modern design depends heavily on the mechanical CAD data base. In the near future, it is reasonable to expect that all data will be integrated in one central data base that includes in addition to the mon CAD files。s design. (c) Approach to generic ponent design. (d) Basic procurement knowledge when working mainly with subcontractors. (e) Production methods. (f) Acquaintance with different cultures in case of global projects.SubContractor Training and Qualification: Good integration is based on proper building of basic system elements. Awareness of this is not always understood by the endpart designers. They often do not understand why it is important to work according to specific instructions – or it conflicts with their interests. To get there full cooperation, it is important to explain to them the needs, to train them how to work according to the procedures and to monitor the data they transfer. The qualification process can reduce the monitoring efforts. A qualified subcontractor can have advantages over an unqualified subcontractor during mercial negotiations. On plex subsystems, it can even bee go/notgo criteria for choosing the subcontractor. Technical Environment: Efficient control of a large amount of data can be quite easy when using appropriate data management software. Since the entire mechanical data base of the organization is to be controlled by the data management software, choosing the software bees a strategic decision and many aspects need to be examined, like adjustment to the other relevant information