freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

概率論與數(shù)理統(tǒng)計(jì)課后習(xí)題答案下-在線瀏覽

2024-08-04 20:46本頁面
  

【正文】 Z2 1 0 1 2P (3) .習(xí)題四X 1 0 1 2P1/8 1/2 1/8 1/4求E(X),E(X2),E(2X+3).【解】(1) (2) (3) ,求任意取出的5個(gè)產(chǎn)品中的次品數(shù)的數(shù)學(xué)期望、方差.【解】設(shè)任取出的5個(gè)產(chǎn)品中的次品數(shù)為X,則X的分布律為X012345P故 X 1 0 1Pp1 p2 p3且已知E(X)=,E(X2)=,求P1,P2,P3.【解】因……①,又……②,……③由①②③聯(lián)立解得,其中的白球數(shù)X為一隨機(jī)變量,已知E(X)=n,問從袋中任取1球?yàn)榘浊虻母怕适嵌嗌??【解】記A={從袋中任取1球?yàn)榘浊騷,則 f(x)=求E(X),D(X).【解】 故 ,Y,Z相互獨(dú)立,且E(X)=5,E(Y)=11,E(Z)=8,求下列隨機(jī)變量的數(shù)學(xué)期望.(1) U=2X+3Y+1;(2) V=YZ 4X.【解】(1) (2) ,Y相互獨(dú)立,且E(X)=E(Y)=3,D(X)=12,D(Y)=16,求E(3X 2Y),D(2X 3Y).【解】(1) (2) (X,Y)的概率密度為f(x,y)=試確定常數(shù)k,并求E(XY).【解】因故k=2.,Y是相互獨(dú)立的隨機(jī)變量,其概率密度分別為fX(x)= fY(y)=求E(XY).【解】方法一:先求X與Y的均值 由X與Y的獨(dú)立性,得 方法二:,故聯(lián)合密度為于是,Y的概率密度分別為fX(x)= fY(y)=求(1) E(X+Y)。習(xí)題三,以X表示在三次中出現(xiàn)正面的次數(shù),.【解】X和Y的聯(lián)合分布律如表:XY0123100300、2只紅球、2只白球,在其中任取4只球,以X表示取到黑球的只數(shù),.【解】X和Y的聯(lián)合分布律如表:XY0123000102P(0黑,2紅,2白)=0(X,Y)的聯(lián)合分布函數(shù)為F(x,y)=求二維隨機(jī)變量(X,Y)在長方形域內(nèi)的概率.【解】如圖 題3圖說明:也可先求出密度函數(shù),再求概率。(X,Y)的分布密度f(x,y)=求:(1) 常數(shù)A;(2) 隨機(jī)變量(X,Y)的分布函數(shù);(3) P{0≤X1,0≤Y2}.【解】(1) 由得 A=12(2) 由定義,有 (3) (X,Y)的概率密度為f(x,y)=(1) 確定常數(shù)k;(2) 求P{X<1,Y<3};(3) 求P{X};(4) 求P{X+Y≤4}.【解】(1) 由性質(zhì)有故 (2) (3) (4) 題5圖,X在(0,)上服從均勻分布,Y的密度函數(shù)為fY(y)=求:(1) X與Y的聯(lián)合分布密度;(2) P{Y≤X}.題6圖【解】(1) 因X在(0,)上服從均勻分布,所以X的密度函數(shù)為而所以 (2) (X,Y)的聯(lián)合分布函數(shù)為F(x,y)=求(X,Y)的聯(lián)合分布密度.【解】(X,Y)的概率密度為f(x,y)=求邊緣概率密度.【解】 題8圖 題9圖(X,Y)的概率密度為f(x,y)=求邊緣概率密度.【解】 題10圖(X,Y)的概率密度為f(x,y)=(1) 試確定常數(shù)c;(2) 求邊緣概率密度.【解】(1) 得.(2) (X,Y)的概率密度為f(x,y)=求條件概率密度fY|X(y|x),fX|Y(x|y). 題11圖【解】 所以 ,2,3,4,5,從中任取三個(gè),記這三個(gè)號(hào)碼中最小的號(hào)碼為X,最大的號(hào)碼為Y.(1) 求X與Y的聯(lián)合概率分布;(2) X與Y是否相互獨(dú)立?【解】(1) X與Y的聯(lián)合分布律如下表YX345120300(2) 因故X與Y不獨(dú)立(X,Y)的聯(lián)合分布律為XY2 5 8 (1)求關(guān)于X和關(guān)于Y的邊緣分布;(2) X與Y是否相互獨(dú)立?【解】(1)X和Y的邊緣分布如下表XY258P{Y=yi}(2) 因故X與Y不獨(dú)立.,X在(0,1)上服從均勻分布,Y的概率密度為fY(y)=(1)求X和Y的聯(lián)合概率密度;(2) 設(shè)含有a的二次方程為a2+2Xa+Y=0,試求a有實(shí)根的概率.【解】(1) 因 故 題14圖(2) 方程有實(shí)根的條件是故 X2≥Y,從而方程有實(shí)根的概率為: (以小時(shí)計(jì)),并設(shè)X和Y相互獨(dú)立,且服從同一分布,其概率密度為f(x)=求Z=X/Y的概率密度.【解】如圖,Z的分布函數(shù)(1) 當(dāng)z≤0時(shí),(2) 當(dāng)0z1時(shí),(這時(shí)當(dāng)x=1000時(shí),y=)(如圖a) 題15圖(3) 當(dāng)z≥1時(shí),(這時(shí)當(dāng)y=103時(shí),x=103z)(如圖b) 即 故 (以小時(shí)計(jì))近似地服從N(160,202) 只,求其中沒有一只壽命小于180的概率.【解】設(shè)這四只壽命為Xi(i=1,2,3,4),則Xi~N(160,202),從而 ,Y是相互獨(dú)立的隨機(jī)變量,其分布律分別為P{X=k}=p(k),k=0,1,2,…,P{Y=r}=q(r),r=0,1,2,….證明隨機(jī)變量Z=X+Y的分布律為P{Z=i}=,i=0,1,2,….【證明】因X和Y所有可能值都是非負(fù)整數(shù),所以 于是
點(diǎn)擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1