【摘要】高一數(shù)學(xué)必修2《空間幾何體的結(jié)構(gòu)》練習(xí)題一、選擇題1.在棱柱中()A.只有兩個(gè)面平行B.所有的棱都平行C.所有的面都是平行四邊形D.兩底面平行,且各側(cè)棱也互相平行2.將圖1所示的三角形線直線l旋轉(zhuǎn)一周,可以得到如圖2所示的幾何體的是哪一個(gè)三角形()3.如圖一個(gè)封閉
2025-05-22 04:59
【摘要】第一章空間幾何體空間幾何體的結(jié)構(gòu)一、選擇題1、下列各組幾何體中是多面體的一組是()A三棱柱四棱臺(tái)球圓錐B三棱柱四棱臺(tái)正方體圓臺(tái)C三棱柱四棱臺(tái)正方體六棱錐D圓錐圓臺(tái)球半球2、下列說(shuō)法正確的是()A有一個(gè)面是多邊形,其余各面是三角形的多面體是棱錐B有兩個(gè)面
2024-07-29 13:49
【摘要】幾何體的外接球一、球的性質(zhì)回顧如右圖所示:O為球心,O’為球O的一個(gè)小圓的圓心,則此時(shí)OO’垂直于圓O’所在平面。二、常見(jiàn)平面幾何圖形的外接圓外接圓半徑(r)的求法1、三角形:(1)等邊三角形:等邊三角形也即正三角形,其滿足正多邊形的基本特征:五心合一,即內(nèi)心、外心、重心、垂心、中心重合于一點(diǎn)。內(nèi)心:內(nèi)切圓圓心,各角角平分線的交點(diǎn);外心:外
2025-05-11 12:12
【摘要】空間幾何體的表面積和體積練習(xí)題題1一個(gè)圓錐與一個(gè)球的體積相等,圓錐的底面半徑是球的半徑的3倍,則圓錐的高與底面半徑之比為( )A. B. C. D.題2正四棱錐P—ABCD的五個(gè)頂點(diǎn)在同一個(gè)球面上,若該正四棱錐的底面邊
2025-05-12 06:49
【摘要】、棱錐、棱臺(tái)的結(jié)構(gòu)特征(第一課時(shí))教材分析幾何學(xué)是研究現(xiàn)實(shí)世界中物體的形狀、大小和位置關(guān)系的學(xué)科.空間幾何體是幾何學(xué)的重要組成部分,是第二章研究空間點(diǎn)、線、面位置關(guān)系的載體,對(duì)于培養(yǎng)和發(fā)展學(xué)生的空間想象能力,推理論證能力、運(yùn)用圖形語(yǔ)言進(jìn)行交流的能力有著十分重要的作用.第一章空間幾何體的第一節(jié)空間幾何體的結(jié)構(gòu)包括兩節(jié)內(nèi)容.本節(jié)課是第一節(jié)的第一課時(shí),介紹了棱柱、棱錐、棱臺(tái)等多面體的結(jié)構(gòu)特
2025-06-04 07:58
【摘要】空間幾何體基礎(chǔ)解答題 一.解答題(共24小題)1.(2009?奉賢區(qū)二模)如圖,已知三棱柱ABC﹣A1B1C1是直三棱柱,∠ACB=,若用此直三棱柱作為無(wú)蓋盛水容器,容積為10(L),高為4(dm),盛水時(shí)發(fā)現(xiàn)在D、E兩處有泄露,且D、E分別在棱AA1和CC1上,DA1=3(dm),EC1=2(dm).試問(wèn)現(xiàn)在此容器最多能盛水多少?2.如圖,ABCD﹣A′B′C′D′為
2024-08-03 18:25
【摘要】《空間幾何體的結(jié)構(gòu)》在現(xiàn)實(shí)生活中,我們的周圍存在著各種各樣的物體,它們具有不同的幾何形狀??臻g幾何體如果我們只考慮物體的形狀和大小,而不考慮其它因素,那么由這些物體抽象出來(lái)的空間圖形就叫做空間幾何體。請(qǐng)觀察下圖中的物體我要問(wèn)這些圖片中的物體具有什么樣的幾何結(jié)構(gòu)特征?你能對(duì)它們進(jìn)行分類嗎?我來(lái)
2025-01-27 15:30
【摘要】一、學(xué)情分析:1、學(xué)生知識(shí)結(jié)構(gòu)分析:初中七年級(jí)上認(rèn)識(shí)了直線、射線、線段、角、同時(shí)能夠制長(zhǎng)方體形狀的紙盒;七年級(jí)下學(xué)習(xí)了平面內(nèi)兩條平行直線的位置關(guān)系;八年級(jí)上學(xué)習(xí)了三角形全等;八年級(jí)下學(xué)習(xí)了平面內(nèi)的特殊四邊形;九年級(jí)上學(xué)習(xí)了與圓有關(guān)的位置關(guān)系及多邊形與圓;九年級(jí)學(xué)習(xí)了三角形相似、投影與三視圖;從知識(shí)上具備了學(xué)習(xí)立體幾何所需的平面幾何基礎(chǔ)。2、學(xué)生非智力因素分析:前面從老師已經(jīng)
2024-09-28 16:48
【摘要】高一數(shù)學(xué)《空間幾何體的三視圖和直觀圖》練習(xí)題A組1.右圖是一塊帶有圓形空洞和方形空洞的小木板,則下列物體中既可以堵住圓形空洞,又可以堵住方形空洞的是()2.利用斜二測(cè)畫(huà)法得到的 ①三角形的直觀圖一定是三角形; ②正方形的直觀圖一定是菱形; ③等腰梯形的直觀圖可以是平行四邊形; ④菱形的直觀圖一定是菱形. 以上結(jié)論正確的是 ()
2025-05-22 05:00
【摘要】空間幾何體的結(jié)構(gòu)第一課時(shí)空間幾何體及棱柱、棱錐的結(jié)構(gòu)特征任意四邊形平行四邊形矩形菱形正方形梯形等腰梯形直角梯形兩組對(duì)邊平行一組對(duì)邊平行另一組對(duì)邊不平行四邊形的分類及轉(zhuǎn)化對(duì)邊角對(duì)角線對(duì)稱性平行四
2025-01-25 11:28
【摘要】.......空間幾何體的表面積與體積專題一、選擇題1.棱長(zhǎng)為2的正四面體的表面積是( C ).A.B.4C.4D.16解析 每個(gè)面的面積為:
2024-08-03 03:46
【摘要】空間幾何體復(fù)習(xí)資料一、空間幾何體的類型1、多面體:由若干個(gè)平面多邊形圍成的幾何體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。常見(jiàn)的多面體有:棱柱、棱錐、棱臺(tái)2、旋轉(zhuǎn)體:把一個(gè)平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)體的軸。常見(jiàn)的旋轉(zhuǎn)體有:圓柱、圓錐、圓臺(tái)、球3、簡(jiǎn)單組合體的構(gòu)成形
2025-06-04 08:18
【摘要】精品資源普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座8)—空間幾何體一.課標(biāo)要求:1.利用實(shí)物模型、計(jì)算機(jī)軟件觀察大量空間圖形,認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu);2.能畫(huà)出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)使用材料(如:
2024-08-09 17:08
【摘要】第一章:空間幾何體第一課時(shí) §、錐、臺(tái)、球的結(jié)構(gòu)特征一、教學(xué)目標(biāo)1.知識(shí)與技能(1)通過(guò)實(shí)物操作,課件展示,增強(qiáng)學(xué)生的直觀感知.(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類.(3)會(huì)用語(yǔ)言概述棱柱、棱錐、棱臺(tái)、(圓柱、圓錐、圓臺(tái)、球)的結(jié)構(gòu)特征.(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的
2025-06-04 07:49
【摘要】必修二第一章空間幾何體的結(jié)構(gòu)1.下列幾何體中棱柱有( )A.5個(gè) B.4個(gè)C.3個(gè) D.2個(gè) 2.有兩個(gè)面平行的多面體不可能是( )A.棱柱 B.棱錐C.棱臺(tái) D.以上都錯(cuò)3.一棱柱有10個(gè)頂點(diǎn),且所有側(cè)棱長(zhǎng)之和為100,則其側(cè)棱長(zhǎng)為( )A.10 B.20C.5 D.15
2025-05-22 05:12