【摘要】一.填空1.Euler法的一般遞推公式為,整體誤差為,局部截?cái)嗾`差為:.,改進(jìn)Euler的一般遞推公式整體誤差為,局部截?cái)嗾`差為:。2.線性多步法絕對(duì)穩(wěn)定的充要條件是
2025-06-03 23:19
【摘要】湖南工程學(xué)院微分方程數(shù)值解法實(shí)驗(yàn)報(bào)告專業(yè)班級(jí)姓名學(xué)號(hào)組別信息與計(jì)算科學(xué)1001鄧鶴201010010215實(shí)驗(yàn)日期2013年5月9日第4次實(shí)驗(yàn)指導(dǎo)老師楊繼明評(píng)分實(shí)驗(yàn)名稱用差分格式求雙曲型方程的邊值問題實(shí)驗(yàn)?zāi)康氖煜ふ莆针p曲型方程邊值問題的差分格式并程序?qū)崿F(xiàn)實(shí)驗(yàn)原理與步驟:利用差分格式求下面波動(dòng)方程混合邊
2024-08-31 03:07
【摘要】偏微分方程數(shù)值解試題(06B)參考答案與評(píng)分標(biāo)準(zhǔn)信息與計(jì)算科學(xué)專業(yè)一(10分)、設(shè)矩陣對(duì)稱,定義,.若,則稱稱是的駐點(diǎn)(或穩(wěn)定點(diǎn)).矩陣對(duì)稱(不必正定),求證是的駐點(diǎn)的充要條件是:是方程組的解解:設(shè)是的駐點(diǎn),對(duì)于任意的,令,(3分),即對(duì)于任意的,,特別取,則有,得到.(3分)反之,若滿足,則對(duì)于任意的,,因此是的最小值點(diǎn).(4分)評(píng)分標(biāo)
2025-03-03 00:13
【摘要】微分方程數(shù)值解法實(shí)驗(yàn)報(bào)告姓名:班級(jí):學(xué)號(hào):一:?jiǎn)栴}描述求解邊值問題:其精確解為問題一:取步長(zhǎng)h=k=1/64,1/128,作五點(diǎn)差分格式,用Jacobi迭代法,Gauss_Seidel迭代法,SOR 迭代法(w=)。求解差分方程,以前后兩次重合到小數(shù)點(diǎn)后四位的迭代值作為解的近似值,比較三
2024-08-31 17:34
【摘要】第8章偏微分方程數(shù)值解一、典型的偏微分方程介紹1.橢圓型方程:在研究有熱源穩(wěn)定狀態(tài)下的熱傳導(dǎo),有固定外力作用下薄膜的平衡問題時(shí),都會(huì)遇到Poisson方程Dyxyxfyuxu???????),(),(222202222??????yuxu
2024-09-15 11:00
【摘要】1山東英才學(xué)院畢業(yè)論文設(shè)計(jì)論文題目:微分方程數(shù)值解二級(jí)學(xué)院:計(jì)算機(jī)電子信息工程學(xué)院學(xué)科專業(yè):計(jì)算機(jī)及應(yīng)用學(xué)號(hào):姓
2025-02-05 17:07
【摘要】第二章習(xí)題答案第二章?第三章?第四章?第五章?第六章?q1顯示答案a1隱藏答案q2顯示答案a2第二章?第三章?第四章?第五章?第六章?q1顯示答案a1隱藏答案q2顯示答案a2隱藏答案q3顯示
2024-07-30 20:50
2024-07-30 20:37
【摘要】一、編寫程序解下列微分方程的數(shù)值解,,二、假設(shè)有兩種群,當(dāng)他們獨(dú)自生存時(shí)數(shù)量演變服從Logistic規(guī)律,表為其中分別為甲、乙種群的數(shù)量,為它們的固有增長(zhǎng)率,為他們的最大容量。當(dāng)兩種群在同一環(huán)境中生存時(shí),它們之間的一種關(guān)系是為爭(zhēng)奪同一資源而進(jìn)行競(jìng)爭(zhēng),考察由于乙種群消耗有限資源對(duì)甲的增長(zhǎng)產(chǎn)生的影響,可以合理地將種群甲的方程修改為的含義,對(duì)供養(yǎng)甲的資源而言,單位數(shù)
2024-11-05 16:00
【摘要】演示課件之三微分方程解的性態(tài)演示實(shí)驗(yàn)一、Lorenz微分方程模型實(shí)驗(yàn)?zāi)康淖寣W(xué)生觀察常微分方程組解的某些特征,從而揭示其中的數(shù)學(xué)規(guī)律和奧妙!著名的Lorenz微分方程模型:假定參數(shù)分別取值為:β=8/3,σ=10,ρ=28
2024-11-05 14:58
【摘要】課程名稱(中文):偏微分方程數(shù)值解專題課程名稱(英文):Sometopicsonnumericalsolutionsofpartialdifferentialequations一)課程目的和任務(wù):有限差分方法是微分方程定解問題的最廣泛的數(shù)值方法之一,其基本思想是用差商近似代替導(dǎo)數(shù),用有限個(gè)未知量的差分方程組的解作為微分方程定解問題的解。本課程旨在介紹非線性拋物和
2024-07-18 22:58
【摘要】數(shù)學(xué)實(shí)驗(yàn)ExperimentsinMathematics重慶郵電學(xué)院基礎(chǔ)數(shù)學(xué)教學(xué)部微分方程實(shí)驗(yàn)?zāi)康膶?shí)驗(yàn)內(nèi)容MATLAB2、學(xué)會(huì)用Matlab求微分方程的數(shù)值解.實(shí)驗(yàn)軟件1、學(xué)會(huì)用Matlab求簡(jiǎn)單微分方程的解析解.1、求簡(jiǎn)單微分方程的解析解.4、實(shí)驗(yàn)作業(yè).2、求微分方程的數(shù)值解.3、數(shù)學(xué)建模實(shí)例
2025-02-05 11:38
【摘要】第九章常微分方程的數(shù)值解法 在自然科學(xué)的許多領(lǐng)域中,都會(huì)遇到常微分方程的求解問題。然而,我們知道,只有少數(shù)十分簡(jiǎn)單的微分方程能夠用初等方法求得它們的解,多數(shù)情形只能利用近似方法求解。在常微分方程課中已經(jīng)講過的級(jí)數(shù)解法,逐步逼近法等就是近似解法。這些方法可以給出解的近似表達(dá)式,通常稱為近似解析方法。還有一類近似方法稱為數(shù)值方法,它可以給出解在一些離散點(diǎn)上的近似值。利用計(jì)算機(jī)解微分方程主要
2024-10-02 20:43
【摘要】第九章常微分方程的數(shù)值解法§1、引言§2、初值問題的數(shù)值解法單步法§3、龍格-庫(kù)塔方法§4、收斂性與穩(wěn)定性§5、初值問題的數(shù)值解法―多步法§6、方程組和剛性方程§7、習(xí)題和總結(jié)主要內(nèi)容主
2024-09-14 15:59
【摘要】微分方程 什么是微分方程?它是怎樣產(chǎn)生的?這是首先要回答的問題. 300多年前,由牛頓(Newton,1642-1727)和萊布尼茲(Leibniz,1646-1716)所創(chuàng)立的微積分學(xué),是人類科學(xué)史上劃時(shí)代的重大發(fā)現(xiàn),而微積分的產(chǎn)生和發(fā)展,,,運(yùn)動(dòng)規(guī)律很難全靠實(shí)驗(yàn)觀測(cè)認(rèn)識(shí)清楚,,運(yùn)動(dòng)物體(變量)與它的瞬時(shí)變化率(導(dǎo)數(shù))之間,通常在運(yùn)動(dòng)過程中按照某種己知定律存在著聯(lián)系,我們?nèi)?/span>
2024-08-04 23:00