【摘要】1法門高中姚連省2前面,我們把平面向量推廣到空間向量向量漸漸成為重要工具立體幾何問題(研究的基本對象是點、直線、平面以及由它們組成的空間圖形)從今天開始,我們將進一步來體會向量這一工具在立體幾何中的應用.
2024-11-30 13:29
【摘要】第三章空間向量與立體幾何1、坐標運算2、共線向量定理3、共面向量定理6、空間向量基本定理7、立體幾何中的向量方法8、角、距離
2025-04-13 05:16
【摘要】第二章檢測題A時間120分鐘,滿分150分。一、選擇題(本大題共10個小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.在空間中,已知動點P(x,y,z)滿足z=0,則動點P的軌跡是()A.平面B.直線C.不是平面,也不是直線D.
2024-12-15 00:16
【摘要】第二章檢測題B時間120分鐘,滿分150分。一、選擇題(本大題共10個小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.下列說法中不正確的是()A.平面α的法向量垂直于與平面α共面的所有向量B.一個平面的所有法向量互相平行C.如果兩個平面的法向量垂直,那么這兩個
2024-12-15 00:15
【摘要】第3章——空間向量的數(shù)量積[學習目標],掌握兩個向量的數(shù)量積的概念、性質和計算方法及運算規(guī)律.,會用它解決立體幾何中一些簡單的問題.1預習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接
2024-11-30 08:08
【摘要】空間向量練習題1.如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點,PA⊥底面ABCD,PA=2.(Ⅰ)證明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的大小.如圖所示,以A為原點,坐標分別是A(0,0,0),B(1,0,0),P(0,0,2),(Ⅰ)證明因為,
2025-07-06 22:52
【摘要】第3章——空間向量及其運算空間向量及其線性運算[學習目標],幾何表示法、字母表示法...1預習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接]觀察正方體中過同一個頂點的
【摘要】第3章——空間線面關系的判定[學習目標]、線面、面面的垂直和平行關系.、面位置關系的一些定理(包括三垂線定理)..1預習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接]
2024-11-29 19:02
【摘要】本章整合從平面向量到空間向量空間向量的運算空間向量的加減法空間向量的數(shù)乘空間向量的數(shù)量積向量的坐標表示和空間向量基本定理空間向量的標準正交分解與坐標表示空間向量基本定理空間向量運算的坐標表示用向量討論垂直與平行
2024-11-28 23:21
【摘要】第二章一、選擇題1.若平面α,β的一個法向量分別為(-1,2,4),(x,-1,-2),并且α⊥β,則x的值為()A.12B.-12C.10D.-10[答案]D[解析]∵α⊥β,∴它們的法向量也互相垂直,∴(-1,2,4)·(x,-1,-2)=0,
2024-12-12 22:16
【摘要】第二章第1課時一、選擇題1.在下列命題中:①若a、b共線,則a、b所在的直線平行;②若a、b所在的直線是異面直線,則a、b一定不共面;③若a、b、c三向量兩兩共面,則a、b、c三向量一定也共面;④已知三向量a、b、c,則空間任意一個向量p總可
【摘要】第一章一、選擇題1.下列語句中不是命題的是()A.3≥6B.二次函數(shù)不是偶函數(shù)C.x>0D.對于x∈R,總有x2>0[答案]C[解析]C選項x的范圍未給出,不能判斷真假.2.下列命題中,假命題的個數(shù)為()①2不是素數(shù);②自然數(shù)不都大于0;③
【摘要】第二章第2課時一、選擇題1.下列式子中正確的是()A.a(chǎn)·|a|=a2B.(a·b)2=a2·b2C.(a·b)c=a(b·c)D.|a·b|≤|a|·|b|[答案]D2.已知非零向量a,b不共線,且其模相等
【摘要】第二章空間向量與立體幾何§1從平面向量到空間向量課程目標學習脈絡1.經(jīng)歷從平面向量到空間向量的推廣過程.2.會說出空間向量有關概念的含義.3.能指出直線的方向向量和平面的法向量.4.會用直線的方向向量和直線上一點確定直線,會用法向量和點確定平面.一二一、向
2024-11-28 23:22
【摘要】1北師大版高中數(shù)學選修2-1第二章空間向量與立體幾何法門高中姚連省制作2平面向量的加法、減法與數(shù)乘運算向量加法的三角形法則ab向量加法的平行四邊形法則ba向量減法的三角形法則aba(k0)ka(k0)k向量的數(shù)乘a3推廣:
2024-11-30 00:48