【摘要】第二章貝葉斯決策理論?引言?最小錯誤率貝葉斯決策???統(tǒng)計決策理論是根據(jù)每一類總體的概率分布決定未知類別的樣本屬于哪一類?貝葉斯決策是統(tǒng)計決策理論的基本方法,它的基本假定是分類決策是在概率空間中進行的,并且以下概率分布是已知的–每一類的概率分布–類條件概率密度
2025-01-20 02:31
【摘要】第二章貝葉斯決策理論,,,2.1引言2.2最小錯誤率貝葉斯決策2.3最小風(fēng)險貝葉斯決策2.4正態(tài)分布下的貝葉斯決策,2.1引言,統(tǒng)計決策理論是根據(jù)每一類總體的概率分布決定未知類別的樣本屬于哪一類貝葉斯...
2024-10-20 20:29
【摘要】模式識別——貝葉斯決策理論馬勤勇一最簡單的貝葉斯分類算法?還使用前面的例子:鱸魚(seabass)和鮭魚(salmon)。?使用一個特征亮度對這兩種魚進行表示。?新來了一條魚特征是x(亮度),怎么根據(jù)特征x確定它到底是鱸魚ω1還是鮭魚ω2??已知數(shù)據(jù):鱸魚類標(biāo)號ω1,鮭魚類標(biāo)號ω2。鱸魚
2025-03-11 16:28
【摘要】課前思考?機器自動識別分類,能不能避免錯分類??怎樣才能減少錯誤??不同錯誤造成的損失一樣嗎??先驗概率,后驗概率,概率密度函數(shù)??什么是貝葉斯公式??正態(tài)分布?期望值、方差??正態(tài)分布為什么是最重要的分布之一?學(xué)習(xí)指南?理解本章的關(guān)鍵?要正確理解先驗概率,類概率密度函數(shù),后驗
2025-02-12 05:59
【摘要】1主要內(nèi)容?系統(tǒng)決策概述?定義與特點?問題與模型?系統(tǒng)決策的分類?系統(tǒng)決策的步驟?系統(tǒng)決策的原則?確定型決策方法?定義與條件?決策方法——線性規(guī)劃法?完全不確定型決策方法?五種決策原則?風(fēng)險型決策方法?最大可能法?決策表法
2025-01-21 02:30
【摘要】貝葉斯分析BayeseanAnalysis§一、決策問題的表格表示——損失矩陣對無觀察(No-data)問題a=δ可用表格(損失矩陣)替代決策樹來描述決策問題的后果(損失):……π()…π()…π()
2025-07-09 04:30
【摘要】第一節(jié)貝葉斯推斷方法第二節(jié)貝葉斯決策方法第十一章貝葉斯估計第一節(jié)貝葉斯推斷方法一、統(tǒng)計推斷中可用的三種信息美籍波蘭統(tǒng)計學(xué)家耐曼(-1981)高度概括了在統(tǒng)計推斷中可用的三種信息:1.總體信息,即總體分布或所屬分布族給我們的信息。譬如“總體視察指數(shù)分布”或“總體
2025-03-04 15:16
【摘要】參數(shù)估計2/8/2023第1頁1、統(tǒng)計決策?一、統(tǒng)計決策的三個要素1樣本空間和分布族設(shè)總體X的分布函數(shù)為F(x。?),?是未知參數(shù),若設(shè)X1,…,Xn是來自總體X的一個樣本,則樣本所有可能值組成的集合稱為樣本空間,記為X參數(shù)估計2/8/2023第2頁2決策
2025-01-28 07:36
2025-03-10 14:22
【摘要】第五章貝葉斯決策?在前一章中,我們把人與自然界(或社會)的博弈問題歸納為決策問題,它包含三個要素:狀態(tài)集;行動集;損失函數(shù)。?至今為止,可供決策的信息有:先驗信息;試驗信息或抽樣信息,其中的關(guān)鍵就是要確定一個可觀察的隨機變量X,其概率分布中恰好把它當(dāng)作未知參數(shù)。?對上述兩種信息的使用情況,形成不同的決策問題。(
2025-05-16 01:38
【摘要】現(xiàn)代信息決策方法2-5貝葉斯決策第三節(jié)風(fēng)險型決策常用的風(fēng)險型決策方法:(一)最大可能法(二)期望值決策(三)決策樹決策(四)貝葉斯決策(五)效用決策設(shè)不確定型決策問題的狀態(tài)出現(xiàn)的概率為(或)連續(xù)時記為。
2025-03-06 22:15
【摘要】第二章基于貝葉斯決策理論的分類器ClassifiersBasedonBayesDecisionTheory§1引言§2Bayes決策理論最小錯誤率的貝葉斯決策最小風(fēng)險的貝葉斯決策§3Bayes分類器和判別函數(shù)§4正態(tài)分布的
2025-03-16 14:15
2025-02-23 01:22
【摘要】第2章貝葉斯決策理論,2.0基本概念2.1最小錯誤概率的Bayes決策2.2最小風(fēng)險的Bayes決策2.3Neyman-Pearson決策2.4Bayes估計和Bayes學(xué)習(xí)2.5正態(tài)分布時的Baye...
2024-11-17 22:47