【摘要】對數(shù)的運算性質(zhì)課前練習(xí):⑴給出四個等式:其中正確的是________⑵⑶⑷1),2)43?證明:①設(shè)由對數(shù)的定義可以得:∴MN=即證得對數(shù)的運算性質(zhì)證明:對數(shù)的運算性質(zhì)兩個正數(shù)的積的對數(shù)等于這兩個正數(shù)的對數(shù)和兩個正數(shù)的商的對數(shù)等于這兩個正
2024-11-12 20:16
【摘要】對數(shù)的概念引入::一尺之棰,日取其半,萬世不竭。(1)取4次,還有多長?(2)取多少次,還有?2020年我國國民生產(chǎn)總值為a億元,如果每年平均增長8%,那么經(jīng)過多少年國民生產(chǎn)總值是2020年的2倍?抽象出:1?21).1(4????????21).2(?????
2024-11-24 17:13
2024-11-21 23:27
【摘要】1、向量定義復(fù)習(xí)2、向量加法的三角形法則3、向量加法的平行四邊形法則注:兩個向量的和仍是向量。具有大小和方向的量ABCABDC問題:一架飛機由北京飛往香港,然后再由香港返回北京,我們把北京記作A點,香港記作B點,那么這
2024-11-24 16:45
【摘要】第八節(jié)對數(shù)與對數(shù)函數(shù)基礎(chǔ)梳理1.對數(shù)及對數(shù)的運算(1)定義:ab=N?b=________(a0,且a≠1).(2)積、商、冪、方根的的對數(shù)(M、N都是正數(shù),a0,且a≠1,n0)①loga(MN)=_______________.②=____
2024-11-21 01:25
【摘要】對數(shù)的運算性質(zhì)與換底公式bNNaab???log指數(shù)真數(shù)底數(shù)對數(shù)冪底數(shù)指數(shù)式對數(shù)式0,10aaNbR????且;;復(fù)習(xí)性質(zhì):log1.aNaa?3.log10a?4.log1aa?
2024-08-20 05:54
【摘要】xyo一、復(fù)習(xí):::如果ax=N,那么數(shù)x叫做以a為底N的對數(shù),記作logaN=x(a0,a≠1).函數(shù)y=ax(a>0,且a≠1)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域是R.某種細(xì)胞1個分裂成2個,2個分裂成4個,4個分
2025-05-21 00:12
【摘要】高中數(shù)學(xué)新課標(biāo)教學(xué)設(shè)計《對數(shù)的運算性質(zhì)》阜蒙縣第二高中姜濤一、教材分析:本節(jié)課是人教版數(shù)學(xué)教材必修1中的第二節(jié)課。在此之前的一節(jié)課中學(xué)習(xí)了對數(shù)的概念和常用對數(shù)以及如何用計算器來求對數(shù)。本節(jié)課所完成的教學(xué)任務(wù)是本小節(jié)的重點,在這一節(jié)課里要讓學(xué)生完成對數(shù)運算法則的學(xué)習(xí)。通過這一節(jié)課的教學(xué),要求學(xué)生準(zhǔn)確掌握對數(shù)的3個運算法則,克服對對數(shù)運算的
2024-12-05 12:37
【摘要】對數(shù)與對數(shù)運算第一課時對數(shù)1999年底,我國人口約13億.如果今后能將人口年平均增長率控制在1%,那么經(jīng)過20年后,我國人口數(shù)最多為多少(精確到億)?到哪一年我國的人口數(shù)將達(dá)到18億?13×(1+1%)x=18,求x=?知識探究數(shù)學(xué)問題?2022年我國
2025-01-16 11:54
【摘要】導(dǎo)數(shù)的運算求下列函數(shù)的導(dǎo)數(shù),并說明所用的公式:?(1)(2)?(3)(4)?(5)(6)?(7)(8)
2024-11-21 03:52
【摘要】對數(shù)與對數(shù)運算(二)一般地,如果a(a0且a1)的b次冪等于N,就是ab=N,那么數(shù)b就叫做以a為底N的對數(shù),記作:logaN=b,其中a叫做底數(shù),N叫做真數(shù)。?復(fù)習(xí)引入10??aa且其中底數(shù)注:0?N真數(shù)2.指數(shù)式與對數(shù)式的互化)10(lo
2024-08-20 05:08
【摘要】對數(shù)的運算廣東仲元中學(xué)一般地,如果的b次冪等于N,就是,那么數(shù)b叫做以a為底N的對數(shù),記作a叫做對數(shù)的底數(shù),N叫做真數(shù)。定義:復(fù)習(xí)上節(jié)內(nèi)容有關(guān)性質(zhì):⑴負(fù)數(shù)與零沒有對數(shù)(∵在指數(shù)式中N0)⑵⑶對數(shù)恒等式復(fù)習(xí)上節(jié)內(nèi)容
2024-11-22 04:19
【摘要】橢圓的性質(zhì)問題1:①橢圓是不是軸對稱圖形?是不是中心對稱圖形?為什么?②標(biāo)準(zhǔn)位置的橢圓的對稱軸是什么?對稱中心是什么?結(jié)論:①橢圓是軸對稱圖形,也是中心對稱圖形。②標(biāo)準(zhǔn)位置的橢圓的對稱軸是x軸、y軸,原點是它的對稱中心。橢圓的對稱中心叫做橢圓的中心。問題2:?,)(12222分
2024-08-31 02:00
【摘要】對數(shù)的運算華南師范大學(xué)徐小青一般地,如果??1,0??aaa的b次冪等于N,就是Nab?,那么數(shù)b叫做以a為底N的對數(shù),記作bNa?loga叫做對數(shù)的底數(shù),N叫做真數(shù)。定義:復(fù)習(xí)上節(jié)內(nèi)容例如:1642?????216log
2024-10-23 18:59
【摘要】集合的基本運算思考:類比引入兩個實數(shù)除了可以比較大小外,還可以進(jìn)行加法運算,類比實數(shù)的加法運算,兩個集合是否也可以“相加”呢?思考:類比引入考察下列各個集合,你能說出集合C與集合A、B之間的關(guān)系嗎?(1)A={1,3,5},B={2,4,6},
2024-11-24 16:41