【摘要】?特征圖形表示符號表示內(nèi)容關系直線在平面內(nèi)直線與平面相交直線與平面平行有無數(shù)個公共點有且只有一個公共點沒有公共點a?aA?aa??a∩?=Aa∥?a??一、線面位置關系
2024-11-21 08:06
【摘要】直線與雙曲線?ABP,BA12yx)1,1(22中點恰為且使兩點、交于與雙曲線能否作一直線過點???這樣的直線不存在12yx),1,1(P22??)k)(1x(k1y,:不存在顯然不可能方程為存在設直線解????)k1(kxy???則得代入12yx22??)(03kk
2024-11-21 03:12
【摘要】2.1橢圓2.橢圓的定義與標準方程課堂互動講練知能優(yōu)化訓練課前自主學案學習目標學習目標,經(jīng)歷從具體情境中抽象出橢圓的過程、橢圓標準方程的推導與化簡過程.2.掌握橢圓的定義、標準方程及幾何圖形.課前自主學案溫故夯基1.經(jīng)過(1,3)、(2,5
2024-11-24 16:43
【摘要】第八單元直線與圓的方程知識體系2020年考試說明內(nèi)容要求ABC直線的斜率與傾斜角√直線方程√兩直線的平行與垂直關系√兩直線的交點√兩點間的距離、點到直線的距離√圓的標準方程和一般方程√直線與圓、圓與圓的位置關系√最新考綱第一節(jié)直線的斜率與直線的
2024-11-24 17:10
【摘要】、斜率、截距(1)直線向上的方向與x軸正方向所成的最小正角,叫做這條直線的傾斜角.傾斜角的取值范圍是[0,π)(2)若直線的傾斜角為α(α≠90°),則k=tanα,叫做這條直線的斜率.經(jīng)過兩點P1(x1,y1),P2(x2,y2)(x1≠x2)的直線的斜率(3)直線的橫截距是直線與x軸交點的橫坐標,直
2024-11-21 00:53
【摘要】嘉祥一中數(shù)學教研組:范景華如何精確地設計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.課題引入:橢圓的形成過程行星運行的軌道我們的太陽系二.講授新課:平面內(nèi)到兩個定點F1、F2的距離之和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,
2024-11-24 19:04
【摘要】一、轉移代入法這個方法又叫相關點法或坐標代換法.即利用動點P’(x’,y’)是定曲線F(x,y)=0上的動點,另一動點P(x,y)依賴于P’(x’,y’),那么可尋求關系式x’=f(x,y),y’=g(x,y)后代入方程F(x’,y’)=0中,得到動點P的軌跡方程例1:已知點A(3,0),點P在圓x2+y2=1的上半圓周上(即y&g
2024-11-21 01:17
【摘要】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關系是:a2=b2+c2當焦點在X軸上時當焦點在Y軸上時二、橢圓簡單的幾何性質1、范圍:
2024-11-24 18:11
【摘要】上海市八中學的距離:到直線點0)0(:),(2200?????bacbyaxlyxP2200||bacbyaxd????兩條平行線l1:ax+by+c1=0與l2:ax+by+c2=0的距離:.||2221baccd???問題1:已知△ABC的三個頂點坐標分別為A(1,3)、B(3,1)、C(?1,0),求△
2024-08-31 01:49
【摘要】直線與圓的位置關系種類種類:相離(沒有交點)相切一個交點相交二個交點相離沒有交點相交(一個交點)相交(二個交點)直線與圓的位置關系的判定mx2+nx+p=0(m≠0)Ax+By+C=0(x-a)2+(y-b)2=r2由方程組:0方程組無解相離無交點=0方程組有一解相切
2024-11-24 17:11
【摘要】直線的方程本單元網(wǎng)絡結構圖知識點回顧主要題型直線的傾斜角和斜率兩條直線的位置關系簡單的線性規(guī)劃直線方程的五種形式平面直角坐標系中的直線直線的傾斜角直線的斜率點斜式斜截式兩點式截距式一般式重合平行相
【摘要】平面內(nèi)兩直線位置關系(5)-----直線系問題2020年12月16日星期三直線系方程的分類直線系方程的定義直線系方程的應用〔課堂結構〕一、直線系方程的定義?直線系:?具有某種共同性質的所有直線的集合.它的方程叫直線系方程。二、直線系方程的種類1:1:與直線
2024-11-21 01:05
【摘要】橢圓定義及標準方程(3)橢圓定義及標準方程(3)---復習舊知(1)寫出圓的標準方程、參數(shù)方程。(2)橢圓的標準方程是什么?(3)求曲線方程的基本方法有哪幾種?橢圓定義及標準方程(3)---新知探究例3如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點P向x軸作垂線PP1,求線段PP1中點M的軌跡。
2024-11-21 01:54
【摘要】橢圓的標準方程生活中有橢圓,生活中用橢圓求曲線方程的基本步驟?設點建系找等量關系坐標化化簡、檢驗推導橢圓的標準方程F1F2xy0[1]建系:以過焦點F1,F(xiàn)2的直線為x軸,線段的垂直平分線為y軸,建立直角坐標系,則
2024-11-22 01:36
【摘要】貴溪市第一中學數(shù)學公開課:《直線與平面垂直的判定》課件(北師大版高中必修2)旗桿與地面垂直我們熱愛祖國,我們熱愛五星紅旗!科學技術是第一生產(chǎn)力杭州灣跨海大橋的橋墩與水面垂直一條直線與一個平面垂直的意義是什么?引入新課AαB
2024-11-21 03:30