【摘要】等差數(shù)列的性質(zhì)同步練習(xí)題二 班級(jí) 姓名 ()1.已知等差數(shù)列{an}中,a1+a4+a7=39,a2+a5+a8=33,則a3+a6+a9等于A.30 B.27 C.24 D.21()2.已知在等差數(shù)列{an}中,a1<0,S25=S45,若Sn最小,則n為A.25 B.35 C.36
2025-07-04 05:16
【摘要】課前探究學(xué)習(xí)課堂講練互動(dòng)【課標(biāo)要求】1.進(jìn)一步了解等差數(shù)列的項(xiàng)與序號(hào)之間的規(guī)律.2.理解等差數(shù)列的性質(zhì).3.掌握等差數(shù)列的性質(zhì)及其應(yīng)用.【核心掃描】1.等差數(shù)列的性質(zhì)及證明.(重點(diǎn))2.運(yùn)用等差數(shù)列定義及性質(zhì)解題.(難點(diǎn))第2課時(shí)等差數(shù)列的性質(zhì)及其應(yīng)用課前探
2024-08-20 15:33
【摘要】實(shí)用標(biāo)準(zhǔn)文案等差數(shù)列基礎(chǔ)習(xí)題選(附有詳細(xì)解答) 一.選擇題(共26小題)1.已知等差數(shù)列{an}中,a3=9,a9=3,則公差d的值為( ) A.B.1C.D.﹣1 2.已知數(shù)列{an}的通項(xiàng)公式是an=2n+5,則此數(shù)列是( ?。.以7為首項(xiàng),公差為2的等差數(shù)列B.以7為首項(xiàng),公差為5的等差數(shù)列 C.
2025-06-28 07:59
【摘要】(二)本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練(二)本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練(二)填一填·知識(shí)要點(diǎn)、記下疑難點(diǎn)本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練(二)填一填·知識(shí)要點(diǎn)、記下疑難點(diǎn)本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練(二)研一研·問(wèn)題探究、課堂更高效本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練(
2024-08-20 10:29
【摘要】山東鄆城樹(shù)人高中康秀玲歡迎各位老師訪問(wèn)”俊秀之家”知識(shí)回顧等差數(shù)列AAAAAAAAAAAAA每一項(xiàng)與它前一項(xiàng)的差如果一個(gè)數(shù)列從第2項(xiàng)起,等于同一個(gè)常數(shù).......【說(shuō)明】AAA①數(shù)列{an}為等差數(shù)列?an+1-an=d或an+1=an
2024-11-21 00:37
【摘要】等差數(shù)列1.定義:或2.等差數(shù)列的通項(xiàng):或。3.等差中項(xiàng):若成等差數(shù)列,則A叫做與的等差中項(xiàng),且4.等差數(shù)列的前和:,5.等差數(shù)列的性質(zhì):(1)當(dāng)公差時(shí),等差數(shù)列的通項(xiàng)公式是關(guān)于的一次函數(shù),且斜率為公差;是關(guān)于的二次函數(shù)且常數(shù)項(xiàng)為0.(2)若公差,則為遞增等差數(shù)列,若公差,則為遞減等差數(shù)列,若公差,則為常數(shù)列。
2025-04-03 06:56
【摘要】數(shù)學(xué)人教A版·必修5
2024-08-10 07:34
【摘要】課時(shí)作業(yè)8 等差數(shù)列的前n項(xiàng)和時(shí)間:45分鐘 滿分:100分課堂訓(xùn)練1.已知{an}為等差數(shù)列,a1=35,d=-2,Sn=0,則n等于( )A.33 B.34C.35 D.36【答案】 D【解析】 本題考查等差數(shù)列的前n項(xiàng)和公式.由Sn=na1+d=35n+×(-2)=0,可以求出n=36.2.等差數(shù)列{an}中,3(a3+a5
2025-07-04 03:50
【摘要】數(shù)列A、等差數(shù)列知識(shí)點(diǎn)及例題一、數(shù)列由與的關(guān)系求由求時(shí),要分n=1和n≥2兩種情況討論,然后驗(yàn)證兩種情況可否用統(tǒng)一的解析式表示,若不能,則用分段函數(shù)的形式表示為。〖例〗根據(jù)下列條件,確定數(shù)列的通項(xiàng)公式。分析:(1)可用構(gòu)造等比數(shù)列法求解;(2)可轉(zhuǎn)化后利用累乘法求解;(3)將無(wú)理問(wèn)題有理化,而后利用與的關(guān)系求解。解答:(1)(2)……累乘可
2025-07-04 02:06
【摘要】數(shù)列和等差數(shù)列練習(xí)題一、填空題1,1、數(shù)列1,2、等差數(shù)列-3,-6,-9,-12,…的通項(xiàng)公式是——3、已知數(shù)列4,7,10,…,3n-2,…則4891是這個(gè)數(shù)列的第------4、a1a2a3a4成等差數(shù)列,a1+a4=25,則s4=-----------5、在等差數(shù)列{an}中,s7=63,則a4=---------- 6,在等差數(shù)列
2025-01-23 02:19
【摘要】《等差數(shù)列》選自普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)《數(shù)學(xué)》必修5授課者:楊福慶20222202247一、教材分析?教材地位、作用?教學(xué)目標(biāo)?教學(xué)重點(diǎn)、難點(diǎn)教材地位與作用數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特
2024-08-01 22:13
【摘要】等差數(shù)列(二)知識(shí)回顧等差數(shù)列?????????—幾何意義—通項(xiàng)公式—遞推公式(定義式)—定義AAAAAAAAAAAAA每一項(xiàng)與它前一項(xiàng)的差如果一個(gè)數(shù)列從第2項(xiàng)起,等于同一個(gè)常數(shù).......②等差數(shù)列的通項(xiàng)公式是關(guān)于n的一次函數(shù)形
2024-12-06 17:31
【摘要】等差數(shù)列的性質(zhì):(1)等差中項(xiàng):2an=an+1+an-1(2A=a+b)(2)在等差數(shù)列{an}中a1+ana2+an-1——a3+an-2…am+an-m===②上面的命題中的等式兩邊有相同數(shù)目的項(xiàng),如a1+a2=a3成立嗎?{an}中,由
2024-08-31 02:29
【摘要】主導(dǎo):王xxxxxx主演:0622班學(xué)生3、1數(shù)列的概念1、數(shù)列的定義:按一定順序排列的一列數(shù)叫數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。根據(jù)數(shù)列的定義知:數(shù)列是按一定順序排列的一列數(shù).因此,若兩個(gè)數(shù)列中被排列的數(shù)相同,但次序不同,則
2024-11-22 01:48
【摘要】等差及等比數(shù)列定義及其性質(zhì)知識(shí)要點(diǎn)解法七:令m=1得S1=30,S2=100,得a1=30,a1+a2=100,∴a1=30,a2=70∴a3=70+(70-30)=110∴S3=a1+a2+a3=2101、數(shù)列的單調(diào)性:(等差數(shù)列)(1)當(dāng)d0時(shí),為遞增數(shù)列;sn有最?。?)當(dāng)d
2024-08-30 20:33