【摘要】考點(diǎn)一全等三角形的判定(5年5考)例1(2022·濟(jì)寧中考)在△ABC中,點(diǎn)E,F(xiàn)分別是邊AB,AC的中點(diǎn),點(diǎn)D在BC邊上,連接DE,DF,EF,請你添加一個條件,使△BED與△FDE全等.【分析】根據(jù)三角形中位線定理得到EF∥BC,根據(jù)平行四邊形的判定定理、全等三角形的
2025-06-30 06:01
【摘要】第三節(jié)全等三角形考點(diǎn)一全等三角形的判定及性質(zhì)百變例題4如圖,點(diǎn)B,E,C,F(xiàn)在一條直線上,AB=DE,AC=DF,BE=:∠A=∠D.【自主解答】證明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF
2025-06-24 14:35
【摘要】第三節(jié)特殊三角形考點(diǎn)一等腰三角形的判定與性質(zhì)例1(2022·瀘州)如圖,等腰△ABC的底邊BC=20,面積為120,點(diǎn)F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點(diǎn)D在EG上運(yùn)動,則△CDF周長的最小值為.【分析】根據(jù)兩點(diǎn)之間,線段最短確定最小值點(diǎn),再利用等腰三角形的性質(zhì)進(jìn)行求解
2025-06-26 03:16
2025-06-21 13:23
【摘要】第三節(jié)全等三角形考點(diǎn)一全等三角形的判定(5年2考)例1(2022·東營中考)如圖,在△ABC中,AB>AC,點(diǎn)D,E分別是邊AB,AC的中點(diǎn),點(diǎn)F在BC邊上,連接DE,DF,EF,則添加下列哪一個條件后,仍無法判斷△FCE與△EDF全等()A.∠A=∠DFEB.B
2025-06-22 03:43
【摘要】第三節(jié)全等三角形考點(diǎn)一全等三角形的判定例1(2022·四川成都中考)如圖,已知∠ABC=∠DCB,添加以下條件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AA
2025-06-24 20:42
【摘要】第三節(jié)全等三角形考點(diǎn)一全等三角形的判定例1(2022·四川成都中考)如圖,已知∠ABC=∠DCB,添加以下條件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC【分析】全等三角形的判定方法有SAS,ASA,A
2025-06-26 20:23
【摘要】第四節(jié)全等三角形考點(diǎn)全等三角形的判定及性質(zhì)命題角度?平移型例1(2022·云南省卷)如圖,點(diǎn)E、C在線段BF上,BE=CF,AB=DE,AC=:∠ABC=∠DEF.【分析】先證明△ABC≌△DEF,然后利用全等三角形的性質(zhì)即可得證.【自主解答】證明:∵BE=CF,
2025-06-30 06:15
2025-06-21 01:33
【摘要】第四章三角形相似三角形考點(diǎn)1比例線段陜西考點(diǎn)解讀中考說明:、線段的比、成比例的線段。:兩條直線被一組平行線所截,所得的對應(yīng)線段成比例。(1)(2)(3)(0,0);acadbcbdbd?????2(0,0);abbacbcbc?????(0)ac
2025-06-21 12:00
【摘要】第四章三角形全等三角形考點(diǎn)1全等三角形的概念及性質(zhì)陜西考點(diǎn)解讀中考說明:理解全等三角形的概念,能識別全等三角形中的對應(yīng)邊,對應(yīng)角。:能夠完全重合的兩個三角形叫作全等三角形。(1)全等三角形的對應(yīng)邊①相等,全等三角形的對應(yīng)角②相等。(2)全等三角形的對應(yīng)線段(如對應(yīng)角的平分線,對應(yīng)邊上的中線、高)
2025-06-29 14:03
2025-06-29 13:46
【摘要】第四章三角形第三節(jié)全等三角形考點(diǎn)全等三角形的判定與性質(zhì)例1(2022·河北)如圖,∠A=∠B=50°,P為AB的中點(diǎn),點(diǎn)M為射線AC上(不與點(diǎn)A重合)的任意一點(diǎn),連接MP,并使MP的延長線交射線BD于點(diǎn)N,設(shè)∠BPN=α.(1)求證:△APM≌△BPN;
2025-06-30 06:00
【摘要】第四章三角形三角形及其性質(zhì)考點(diǎn)1三角形的分類陜西考點(diǎn)解讀三角形按邊的關(guān)系分類如下:三角形按邊的關(guān)系分類如下:陜西考點(diǎn)解讀等腰三角形中至少有兩邊相等,而等邊三角形的三邊都相等,所以等邊三角形是特殊的等腰三角形。【特別提示】【提分必練】1∶2∶3,則這個三角形一定是(
2025-06-27 00:31
【摘要】第四章三角形三角形及其性質(zhì)考點(diǎn)1三角形的分類陜西考點(diǎn)解讀三角形按邊的關(guān)系分類如下:三角形按邊的關(guān)系分類如下:陜西考點(diǎn)解讀等腰三角形中至少有兩邊相等,而等邊三角形的三邊都相等,所以等邊三角形是特殊的等腰三角形?!咎貏e提示】【提分必練】1∶2∶3,則這個三角形一定是(