【正文】
e of different materials, or from the same materials processed in different manners, many require some special surface treatment to provide uniformity of appearance. Surface finishing many sometimes bee an intermediate step processing. For instance, cleaning and polishing are usually essential before any kind of plating process. Some of the cleaning procedures are also used for improving surface smoothness on mating parts and for removing burrs and sharp corners, which might be harmful in later use. Another important need for surface finishing is for corrosion protection in a variety of environments. The type of protection procedure will depend largely upon the anticipated exposure, with due consideration to the material being protected and the economic factors involved. Satisfying the above objectives necessitates the use of main surfacefinishing methods that involve chemical change of the surface mechanical work affecting surface properties, cleaning by a variety of methods, and the application of protective coatings, organic and metallic. In the early days of engineering, the mating of parts was achieved by machining one part as nearly as possible to the required size, machining the mating part nearly to size, and then pleting its machining, continually offering the other part to it, until the desired relationship was obtained. If it was inconvenient to offer one par to the other part during machining, the final work was done at the bench by a fitter, who scraped the mating parts until the desired fit was obtained, the fitter therefore being a ‘fitter’ in the literal sense. It is obvious that the two parts would have to remain together, and in the event of one having to be replaced, the fitting would have to be done all over again. I n these days, we expect to be able to purchase a replacement for a broken part, and for it to function correctly without the need for scraping and other fitting operations. When one part can be used ‘off the shelf’ to replace another of the same dimension and material specification, the parts are said to be interchangeable. A system of interchangeability usually lowers the production costs as there is no need for an expensive, ‘fiddling’ operation, and it benefits the customer in the event of the need to replace worn parts. Limits and Tolerances Machine parts are manufactured so they are interchangeable. In other words, each part of a machine or mechanism is made to a certain size and shape so it will fit into any o