freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

汽輪機(jī)調(diào)速系統(tǒng)的研究畢業(yè)設(shè)計(jì)-展示頁

2025-05-26 22:31本頁面
  

【正文】 t capacity and parameters, startup and operation is being more and more plex, unit safety has bee increasingly important, always adopts the traditional PID control system already cannot satisfy the requirement of birth, especially large steam turbine. Currently BP neural work can learn and storage of inputoutput model mapping relation, without the prior to reveal the mapping relationship of describing mathematical equations. It is to use the rules of learning the steepest descent method, through propagation to constantl y adjust work weights and threshold, make the minimum error square work. By the neural work theory applied to large turbine unit which can learn all kinds of adaptive perturbation errors of regulating mode, the more time to meet control system, the control requirements. Based on neural work, and by using the neural work selflearning input and output, multilayer adaptive ability, enhance the ability to control steam turbine control system based on BP neural work models, puts forward the state overall design scheme, according to the actual situation of subject to design a faster convergence, training of BP neural work models, finally using MATLAB neural work toolbox functions are given specific implementation method and principle of the results. Key words: BP Network。 MATLAB 目 錄 摘要 Abstract 1 緒論 ........................................................................................................................................... 1 課題的背景及意義 .................................................................................................................. 1 國內(nèi)外的發(fā)展歷史及現(xiàn)狀 ...................................................................................................... 2 本課題所要研究的主要內(nèi)容 .................................................................................................. 4 2 汽輪機(jī)基本原理 ....................................................................................................................... 5 汽輪機(jī) 目前應(yīng)用領(lǐng)域 .............................................................................................................. 5 汽輪機(jī)的主要控制方式及其不足 .......................................................................................... 6 本章小結(jié) .................................................................................................................................. 7 3 BP 神經(jīng)網(wǎng)絡(luò)算法 ...................................................................................................................... 8 神經(jīng)網(wǎng)絡(luò)的基本原理 .......................................................................................................... 8 BP 神經(jīng)網(wǎng)絡(luò)的算法改進(jìn) .................................................................................................... 13 動(dòng)量法改進(jìn) BP 算法 .......................................................................................................... 13 動(dòng)量 自適應(yīng)學(xué)習(xí)率調(diào)整算法 .......................................................................................... 13 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)確定及參數(shù)整定 ........................................................................................ 14 本章小結(jié) ................................................................................................................................ 16 4 計(jì)算機(jī)仿真 ............................................................................................................................. 17 MATLAB 神經(jīng)網(wǎng)絡(luò)工具箱 ...................................................................................................... 17 面向 MATLAB 的 BP神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì) ................................................................................ 17 BP 神經(jīng)網(wǎng)絡(luò)的創(chuàng)建 .......................................................................................................... 17 BP 神經(jīng)網(wǎng)絡(luò)的訓(xùn)練 .......................................................................................................... 17 基于 BP 神經(jīng)網(wǎng)絡(luò)的 PID 整定原理 ...................................................................................... 18 控制器的設(shè)計(jì) ........................................................................................................................ 19 仿真結(jié)果分析 ........................................................................................................................ 19 5結(jié)論 ............................................................................................................................................ 21 參考文獻(xiàn) 致謝 東北林業(yè)大學(xué)畢業(yè)論文 1 汽輪機(jī)控制 的研究 1 緒論 汽輪機(jī)是大型高速旋轉(zhuǎn)的原動(dòng)機(jī),通常在高溫高壓下工作,它是火電廠中最主要的設(shè)備之一。汽輪機(jī)調(diào)速系統(tǒng)是確保汽輪發(fā)電機(jī)組安全、經(jīng)濟(jì)運(yùn)行的重要控制系統(tǒng)之一:在正常運(yùn)行狀態(tài)下,實(shí)現(xiàn)機(jī)組功率與轉(zhuǎn)速的自動(dòng)調(diào)節(jié);在緊急事故工況下,又是防止機(jī)組事故進(jìn)一步惡化的一道屏障。上述工作能否順利地完成,主要取決于調(diào)速器的調(diào)節(jié)性能和可靠性。隨著機(jī)組容量的增加,轉(zhuǎn)子的慣性質(zhì)量與機(jī)組功率的比率逐漸下降,使飛升時(shí)間常數(shù)變小,這對(duì)大型機(jī)組調(diào)節(jié)系統(tǒng)的動(dòng)態(tài)性能提出了更高的要求。 神經(jīng)網(wǎng)絡(luò)( Artificial Neural Networks, ANN) ,一種模仿動(dòng)物神經(jīng)網(wǎng)絡(luò)行為特征,進(jìn)行分布式并行信息處理的算法數(shù)學(xué)模型。神經(jīng)網(wǎng)絡(luò)具有自學(xué)習(xí)和自適應(yīng)的能力,可以通過預(yù)先提供的一批相互對(duì)應(yīng)的輸入-輸出數(shù)據(jù),分析掌握兩者之間潛在的規(guī)律,最終根據(jù)這些規(guī)律,用新的輸入數(shù)據(jù)來推算輸出結(jié)果,這種學(xué)習(xí)分析的過程被稱為“ 訓(xùn)練 ” 。由于神經(jīng)網(wǎng)絡(luò)具有良好的非線性映射能力,自學(xué)習(xí)適應(yīng)能力和并行信息處理能力,為解決未知不確定非線性系統(tǒng)的建模和控制問題提供了一條新的思路,因而吸煙了國內(nèi)外眾多的學(xué)者和工程技術(shù)人員從事 神經(jīng)網(wǎng)絡(luò)控制的研究,并取得了豐碩的成果,提出了許多成功的理論和方法,使神經(jīng)網(wǎng)絡(luò)控制逐步發(fā)展為智能控制的一個(gè)分支。這迫使人們更加不可忽視人類大腦的高超控制作用。人腦所具有的學(xué)習(xí),適應(yīng),模糊和并行信息處理以及直覺推理等多種智能是目前其他一切技術(shù)手段所難以達(dá)到的。 1 神經(jīng)網(wǎng)絡(luò)的控制基本思想就是從仿生學(xué)角度,模擬人腦神經(jīng)系統(tǒng)的運(yùn)作 方式,使機(jī)器具有人腦那樣的感知,學(xué)習(xí)和推理能力。它使模型和控制的概念更加一般化。特別是當(dāng)系統(tǒng)存在不確定因素時(shí),更體現(xiàn)了神經(jīng)網(wǎng)絡(luò)方法的優(yōu) 越性。然而,目前神經(jīng)網(wǎng)絡(luò)的并行計(jì)算能力都是通過計(jì)算機(jī)虛擬實(shí)現(xiàn)的,大多數(shù)情況下扔是一種串行工作模式(相對(duì)實(shí)時(shí)控制熱任務(wù))。 盡管幾年來,神經(jīng)網(wǎng)絡(luò)理論及應(yīng)用研究都取得了可喜的進(jìn)展,但應(yīng)看到,人們對(duì)生物神經(jīng)系統(tǒng)的研究與了解還很不夠,提出的神經(jīng)網(wǎng)絡(luò)模型,無論從結(jié)構(gòu)還是規(guī)模上,都是對(duì)真實(shí)神經(jīng)網(wǎng)絡(luò)的一種簡化和近似。因此,要使神經(jīng)網(wǎng)絡(luò)走出實(shí)驗(yàn)室,
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1