freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx八年級數(shù)學(xué)分解因式教學(xué)設(shè)計-文庫吧資料

2024-11-16 00:27本頁面
  

【正文】 公式),講課的時候是一個公式一節(jié)課,先分解公式符合條件的形式再練習(xí),主要是以練習(xí)為重。正式提出因式分解的定義的時候,同學(xué)們都一副明了的表情。在學(xué)習(xí)因式分解之前的這個專題訓(xùn)練的效果是不錯的,因為平方差公式以及完全平方公式都是剛剛學(xué)習(xí)且應(yīng)用較多的公式。六、教學(xué)準(zhǔn)備:深研課標(biāo)和教材,分析學(xué)情,制作課件七、教學(xué)過程:八、教學(xué)反思:因式分解這部分的內(nèi)容是八年級數(shù)學(xué)第一學(xué)期重難點,雖然應(yīng)用的公式只是三條,但要靈活應(yīng)用于解題卻不容易,所以我在制定這一章書的教學(xué)計劃時就對教材的教學(xué)順序作出了一些調(diào)整。分解因式教學(xué)設(shè)計2一、教材:人教版八年級數(shù)學(xué)第十四章公式法分解因式二、設(shè)計思路:從教材的地位與作用看:⑴本節(jié)課的主要內(nèi)容是平方差公式的推導(dǎo)和平方差公式在整式乘法中的應(yīng)用.⑵它是在學(xué)生已經(jīng)掌握單項式乘法、多項式乘法基礎(chǔ)上的拓展和創(chuàng)造性應(yīng)用;⑶是對多項式乘法中出現(xiàn)的較為特殊的算式的第一種歸納、總結(jié);是從一般到特殊的認識過程的范例.⑷它應(yīng)用十分廣泛,通過乘法公式的學(xué)習(xí),可以豐富教學(xué)內(nèi)容,、分式運算及其它代數(shù)式變形的重要基礎(chǔ).從學(xué)生學(xué)習(xí)過程的角度看:⑴學(xué)生剛學(xué)過多項式的乘法,已經(jīng)具備學(xué)習(xí)和運用平方差公式的知識結(jié)構(gòu);⑵由于學(xué)生初次學(xué)習(xí)乘法公式,認清公式結(jié)構(gòu)并不容易,因此,教學(xué)時不可拔高要求,追求一步到位;⑶學(xué)生在本節(jié)課學(xué)習(xí)過程中出現(xiàn)的錯誤,迸發(fā)出的思維火花、情感都是本節(jié)課較好的教學(xué)資源.三、教學(xué)目標(biāo):(1)知識與技能1.經(jīng)歷逆用平方差公式的過程.2.會運用平方差公式,并能運用公式進行簡單的分解因式.(2)過程與方法1.在逆用平方差公式的過程中,培養(yǎng)符號感和推理能力.2.培養(yǎng)學(xué)生觀察、歸納、概括的能力.(3)情感與價值觀要求:在分解過程中發(fā)現(xiàn)規(guī)律,并能用符號表示,從而體會數(shù)學(xué)的簡捷美;讓學(xué)生在合作探究的學(xué)習(xí)過程中體驗成功的喜悅;培養(yǎng)學(xué)生敢于挑戰(zhàn);勇于探索的精神和善于觀察、大膽創(chuàng)新的思維品質(zhì)。教學(xué)重點和難點重點:靈活運用平方差公式進行分解因式。能運用提公因式法、公式法進行綜合運用。教學(xué)目標(biāo)在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。難點:平方差公式的推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。通過公式a b =(a+b)(ab)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。學(xué)情分析通過探究平方差公式和運用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點,從交流中獲益,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志建立自信心。分解因式這一章在整個教材中起到了承上啟下的作用。本章教材是在學(xué)生學(xué)習(xí)了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式教學(xué)設(shè)計9教材分析因式分解是代數(shù)式的一種重要恒等變形。5.通過活動4,讓學(xué)生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性。3.通過活動4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達化,培養(yǎng)學(xué)生的化歸思想。(二)過程與方法1.經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。但是學(xué)生的預(yù)習(xí)與課堂的學(xué)習(xí)仍需要教師的合理引導(dǎo)和有效掌握,對一些相對落后的學(xué)生來說應(yīng)注重突出重點,分析透徹,所以在教學(xué)時充分考慮到學(xué)生已經(jīng)掌握平方差公式的前提,通過問題引發(fā)學(xué)生思考,提高學(xué)生興趣入手,培養(yǎng)學(xué)生的自主探索,合作交流的能力,在輕松的氛圍中完成教學(xué)任務(wù),從而增強學(xué)好數(shù)學(xué)的愿望與信心四、教學(xué)目標(biāo)(一)知識與技能1.掌握運用平方差公式分解因式的方法。三、學(xué)情分析本課程所教授的學(xué)生程度相對較好,學(xué)生已經(jīng)學(xué)習(xí)了乘法公式中的平方差公式,本節(jié)課是整式乘法的平方差公式的逆向應(yīng)用,學(xué)生在前一階段的學(xué)習(xí)中掌握效果較好,為本節(jié)課的教學(xué)奠定了良好的基礎(chǔ)。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進行整式乘法計算的知識的基礎(chǔ)上充分認識分解因式。二、教材分析本節(jié)課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。分解因式教學(xué)設(shè)計8一、設(shè)計思想本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計的,通過預(yù)設(shè)的問題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的問題,產(chǎn)生對整式的乘法、提公因式法和公式法的對比。例ax2axy+bx2bxycx2+cxy①解:原式=(ax2axy)+(bx2bxy)(cx2cxy)=ax(xy)+bx(xy)cx(xy)=(xy)(ax+bxcx)=x(xy)(a+bc)②解:原式=(ax2+bx2cx2)(axy+bxycxy)=x2(a+bc)xy(a+bc)=x(xy)(a+bc)例x22xy+y2+2x2y+1解:原式=(x22xy+y2)+(2x2y)+1=(xy)2+2(xy)+1=(xy+1)2對于折項、添項法也可轉(zhuǎn)化成這三種基本的方法來進行因式分解。三項這一組可采用提公因式法、完全平方式或十字相乘法,二項這一組可采用提公因式法或平方差公式分解,因此變化性較大。例x2y2+z22xz解:原式=(x22xz+z2)y2=(xz2)y2=(x+yz)(xyz)四項式按“三一”分組,使三項一組應(yīng)用完全平方式,再應(yīng)用平方差進行因式分解。看下面幾例:例4a2+2ab+2ac+bc解:原式 =(4a2+2ab)+(2ac+bc)=2a(2a+b)+c(2a+b)=(2a+b)(2a+c)分組后,每組提出公因式后,產(chǎn)生新的公因式能夠繼續(xù)分解因式,從而達到分解目的。但對于分組分解法、折項、添項法就有些把握不住,應(yīng)用轉(zhuǎn)化就思想就能起到關(guān)鍵的作用。因式分解的基本方法是:提取公因式法、應(yīng)用公式法、十字相乘法。分解因式教學(xué)設(shè)計7因式分解是初中代數(shù)的重要內(nèi)容,因其分解方法較多,題型變化較大,教學(xué)有一定難度。盡管新舊兩種教法的對比上,新課程的教學(xué)不一定馬上顯露出強勁的優(yōu)勢,甚至可能因為強化練習(xí)較少,在短時間內(nèi),學(xué)生的成績比不上傳統(tǒng)教法的學(xué)生成績,但從長遠目標(biāo)看來,這種對數(shù)學(xué)本質(zhì)的訓(xùn)練會有效地提高學(xué)生的數(shù)學(xué)素養(yǎng),培養(yǎng)出學(xué)生對數(shù)學(xué)本質(zhì)的理解,而不僅僅是停留在對數(shù)學(xué)的機械模仿記憶的層面上。在新課程的教學(xué)中,對因式分解的記憶退到了次要的位置,它把因式分解作為培養(yǎng)學(xué)生逆向思維、全面思考、靈活解決矛盾的載體。注意事項:從學(xué)生的反思來看,學(xué)生掌握了新的知識,提高了逆向思維的能力,對于類比的數(shù)學(xué)思想有了一定的理解,對于矛盾對立統(tǒng)一的哲學(xué)觀點也有了一個初步認識。注意事項:從學(xué)生的反饋情況來看,學(xué)生對因式分解意義的理解基本到位。注意事項:學(xué)生通過討論,能找出分解因式與整式的乘法的聯(lián)系與區(qū)別,基本清楚了“分解因式與整式的乘法是一種互逆關(guān)系”以及“分解因式的結(jié)果要以積的形式表示”這兩種事實,后兩種事實是在老師的引導(dǎo)與啟發(fā)下才能完成。第四環(huán)節(jié)學(xué)生討論活動內(nèi)容:比較以下兩種運算的聯(lián)系與區(qū)別:(1)a(a+1)(a—1)=a3—a(2)a3—a=a(a+1)(a—1)在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?結(jié)論:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解。第三環(huán)節(jié)看誰算得準(zhǔn)活動內(nèi)容:計算下列式子:(1)3x(x—1)=;(2)m(a+b+c)=;(3)(m+4)(m—4)=;(4)(y—3)2=;(5)a(a+1)(a—1)=根據(jù)上面的算式填空:(1)ma+mb+mc=;(2)3x2—3x=;(3)m2—16=;(4)a3—a=;(5)y2—6y+9=活動目的:在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。第二環(huán)節(jié)看誰想得快活動內(nèi)容:993–99能被哪些數(shù)整除?你是怎么得出來的?學(xué)生思考:從以上問題的解決中,你知道解決這些問題的關(guān)鍵是什么?活動目的:引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。引入這一步的目的旨在讓學(xué)生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階。三、教學(xué)過程分析本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):看誰算得快——看誰想得快——看誰算得準(zhǔn)——學(xué)生討論——學(xué)生反思。(3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。數(shù)學(xué)能力:(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進一步發(fā)展學(xué)生的類比思想。因此,本課時的教學(xué)目標(biāo)是:知識與技能:(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。學(xué)生活動經(jīng)驗基礎(chǔ):由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對于八年級學(xué)生還比較生疏,接受起來還有一定的困難,再者本節(jié)還沒有涉及因式分解的具體方法,所以對于學(xué)生來說,尋求因式分解的方法是一個難點。本節(jié)是因式分解的第1小節(jié),占一個課時,它主要讓學(xué)生經(jīng)歷從分解因數(shù)到分解因式的過程,讓學(xué)生體會數(shù)學(xué)思想——類比思想,讓學(xué)生了解分解因式與整式的乘法運算之間的互逆關(guān)系,感受分解因式在解決相關(guān)問題中的作用。七.課堂小結(jié),了解學(xué)生對概念的熟悉程度和歸納概括能力、語言表達能力、知識運用能力,教師恰當(dāng)?shù)亟o予引導(dǎo)和啟迪。發(fā)現(xiàn)問題,及時反饋。六、布置作業(yè)1.作業(yè)本(一)中167。3.利用2中關(guān)系,可以從整式乘法探求因式分解的結(jié)果。三、獨立練習(xí),鞏固新知練習(xí)1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?①(x+2)(x2)=x24②x24=(x+2)(x2)③a22ab+b2=(ab)2④3a(a+2)=3a2+6a⑤3a2+6a=3a(a+2)2.因式分解與整式乘法的關(guān)系:因式分解結(jié)合:a2b2=========(a+b)(ab)整式乘法說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。教學(xué)過程安排一、提出問題,創(chuàng)設(shè)情境問題:看誰算得快?(1)若a=101,b=99,則a2b2=(a+b)(ab)=(101+99)(10199)=400(2)若a=99,b=1,則a22ab+b2=(ab) 2=(99+1)2 =10000(3)若x=3,則20x2+60x=20x(x+3)=20x(3)(3+3)=0二、觀察分析,探究新知(1)請每題想得最快的同學(xué)談思路,得出最佳解題方法(2)觀察:a2b2=(a+b)(ab) ①的左邊是一個什么式子?右邊又是什么形式?a22ab+b2 =(ab) 2 ②20x2+60x=20x(x+3) ③(3)類比小學(xué)學(xué)過的因數(shù)分解概念,(例42=237 ④)得出因式分解概念。3.在課堂教學(xué)中,引導(dǎo)學(xué)生體會知識的發(fā)生發(fā)展過程,堅持啟發(fā)式,鼓勵學(xué)生充分地動腦、動口、動手,積極參與到教學(xué)中來,充分體現(xiàn)了學(xué)生的主動性原則。3.寓德育教學(xué)方法1.采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性。目標(biāo)制定的思想1.目標(biāo)具體化、明確化,從學(xué)生實際出發(fā),具有針對性和可行性,同時便于上課操作,便于檢測和及時反饋。能力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、判斷能力和創(chuàng)新能力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維能力和綜合運用能力。在以后的教學(xué)中應(yīng)該更多結(jié)合學(xué)生的學(xué)習(xí)情況去調(diào)整教學(xué)進度,多發(fā)現(xiàn)學(xué)生在學(xué)習(xí)方面的優(yōu)勢和不足之處。因式分解沒有先想提公因式的習(xí)慣,在結(jié)果也沒有注意是否進行到每一個多項式因式都不能再分解為止,比如最簡單的將a3-a提公因式后應(yīng)用平方差公式,但很多同學(xué)都是只化到a(a2-1)而沒有化到最后結(jié)果a(a+1)(a-1)。靈活運用公式(特別與冪的運算性質(zhì)相結(jié)合的公式)的能力較差,如要將9-25x2化成32-(5x)2然后應(yīng)用平方差公式這樣的題目卻無從下手。在學(xué)習(xí)過程中太過于強調(diào)形式,反而如何創(chuàng)造條件來滿足條件忽略了。他們只是看到很表層的東西,而對于較為復(fù)雜的式子,卻無從下手。因為作業(yè)都是最基本的公式應(yīng)用,而提高題一般是特優(yōu)生才會選擇來做。然后講授提公因式法、公式法(包括平方差、完全平方公式),講課的時候是一個公式一節(jié)課,先分解公式符合條件的形式再練習(xí),主要是以練習(xí)為重。正式提出因式分解的定義的時候,同學(xué)們都一副明了的表情。在學(xué)習(xí)因式分解之前的這個專題訓(xùn)練的效果是不錯的,因為平方差公式以及完全平方公式都是剛剛學(xué)習(xí)且應(yīng)用較多的公式。六、教學(xué)準(zhǔn)備:深研課標(biāo)和教材,分析學(xué)情,制作課件七、教學(xué)過程:八、教學(xué)反思:因式分解這部分的內(nèi)容是八年級數(shù)學(xué)第一學(xué)期重難點,雖然應(yīng)用的公式只是三條,但要靈活應(yīng)用于解題卻不容易,所以我在制定這一章書的教學(xué)計劃時就對教材的教學(xué)順序作出了一些調(diào)整。四、教學(xué)重點:利用平方差公式進行分
點擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1