【摘要】雙曲線的幾何性質(zhì)課題第1課時計劃上課日期:教學(xué)目標知識與技能1.了解雙曲線的簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題.過程與方法情感態(tài)度與價值觀教學(xué)重難點雙曲線的幾何性質(zhì)及初步運用教
2024-11-28 00:30
【摘要】x2-y2=4的焦點且垂直于實軸的直線與雙曲線交于A,B兩點,則AB的長為()A.2B.4C.8D.42解析:選x2-y2=4的焦點為(±22,0),把x=22代入并解得y=±2,∴|AB|=2-(-2)=4.2.(2
2024-12-13 06:41
【摘要】(一)【學(xué)習(xí)目標】1.熟練掌握橢圓的范圍,對稱性,頂點等簡單幾何性質(zhì)奎屯王新敞新疆2.掌握標準方程中cba,,的幾何意義,以及ecba,,,的相互關(guān)系奎屯王新敞新疆3.理解、掌握坐標法中根據(jù)曲線的方程研究曲線的幾何性質(zhì)的一般方法奎屯王新敞新疆【自主學(xué)習(xí)】yx,2.的點?橢圓的長軸與短軸是怎樣
【摘要】雙曲線的簡單幾何性質(zhì)【學(xué)習(xí)目標】理解并掌握雙曲線的幾何性質(zhì).【重點難點】雙曲線的幾何性質(zhì).雙曲線的幾何性質(zhì)【學(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材理P56~P58,文P49~P51找出疑惑之處)復(fù)習(xí)1:寫出滿足下列條件的雙曲線的標準方程:①3,4ab??,焦點在x軸上;②焦點在
2024-12-13 06:47
【摘要】橢圓的簡單幾何性質(zhì)(二)【學(xué)習(xí)目標】1.掌握橢圓范圍、對稱性、頂點、離心率、準線方程等幾何性質(zhì);2.能利用橢圓的幾何性質(zhì)解決相關(guān)的問題.【自主檢測】1.求直線320xy???與橢圓221164xy??的交點坐標.2.已知橢圓22149xy??,一組平行直線的斜率是32,問這組直線何時與橢圓相交?
【摘要】圓的簡單幾何性質(zhì)(三)【學(xué)習(xí)目標】1.掌握橢圓的第二定義;2.能利用橢圓的第二定義解決相關(guān)的問題.【典型例題】例1.點(,)Mxy與定點(4,0)F的距離和它到直線25:4lx?的距離之比是常數(shù)45,求點M的軌跡,并說明軌跡是什么圖形.思考:
2024-11-27 19:35
【摘要】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)雙曲線的幾何性質(zhì)(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標】1、會用雙曲線性質(zhì)求雙曲線的基本量;2、理解雙曲線的離心率與漸近線的關(guān)系【課前預(yù)習(xí)】1、若焦點坐標是(5,0),(-5,0),漸近線方程為43yx??,則雙曲線的方程為__________2、雙曲線
2024-11-28 00:31
【摘要】雙曲線及其標準方程(一)【學(xué)習(xí)目標】初步掌握雙曲線的定義,熟記雙曲線的標準方程.【自主學(xué)習(xí)】:手工操作演示雙曲線的形成:(按課本52頁的做法去做)分析:(1)軌跡上的點是怎么來的?(2)在這個運動過程中,什么是不變的?2.雙曲線的定義:平面內(nèi)到兩定點21,FF的距離的為常數(shù)
【摘要】拋物線的簡單幾何性質(zhì)【學(xué)習(xí)目標】掌握拋物線的范圍、對稱性、頂點、離心率等幾何性質(zhì).【自主學(xué)習(xí)】根據(jù)拋物線的標準方程)0(22??ppxy,研究它的幾何性質(zhì):1.范圍2.對稱性3.頂點4.離心率拋物線上的點M與焦點的距離和它到準線的距離的比,叫做拋物線的離心率,用e表示.由拋物線的定義可知,
2024-12-13 06:40
【摘要】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)雙曲線的幾何性質(zhì)(1)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標】1、理解雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì);2、理解雙曲線標準方程中ab、、c的幾何意義?!菊n前預(yù)習(xí)】1、對于雙曲線22194yx??,它的頂點坐標為_____________
2024-12-12 18:02
【摘要】雙曲線及其標準方程(二)【學(xué)習(xí)目標】進一步掌握雙曲線的定義,熟記雙曲線的標準方程.【自主學(xué)習(xí)】名稱橢圓雙曲線圖象xOyxOy定義平面內(nèi)到兩定點21,FF的距離的和為常數(shù)(大于21FF
2024-12-01 01:00
【摘要】10xy-110xy-11-221【學(xué)習(xí)目標】,領(lǐng)會“曲線的方程”與“方程的曲線”的概念及其關(guān)系新疆學(xué)案王新敞、函數(shù)與方程、化歸與轉(zhuǎn)化等數(shù)學(xué)思想,以及坐標法、待定系數(shù)法等常用的數(shù)學(xué)方法新疆學(xué)案王新敞【自主學(xué)習(xí)】請回答如下問題:在直角坐標系中、三象限的角平分線的方程為:
2024-11-27 23:25
【摘要】課題雙曲線的簡單性質(zhì)學(xué)習(xí)目標:...,在自主探究合作交流中通過類比,分析雙曲線的幾何性質(zhì).學(xué)習(xí)重點:掌握雙曲線的簡單幾何性質(zhì)學(xué)習(xí)難點:能區(qū)別橢圓與雙曲線的性質(zhì)學(xué)習(xí)方法:以講學(xué)稿為依托的探究式教學(xué)方法。學(xué)習(xí)過程一、課前預(yù)習(xí)指導(dǎo):1、雙曲線的性質(zhì):
2024-11-26 18:59
【摘要】【學(xué)習(xí)目標】理解軌跡的定義,并能根據(jù)所給的條件,選擇恰當?shù)闹苯亲鴺讼登笄€的軌跡方程,畫出方程所表示的曲線新疆學(xué)案王新敞【自主學(xué)習(xí)】我們已經(jīng)建立了曲線的方程、方程的曲線的概念。利用此概念就可以借助于坐標系,用坐標表示點,把曲線看成滿足某種條件的點的集合或軌跡,用曲線上點的坐標(,)xy所滿足的方程(,)0fxy?表示曲線,
【摘要】●教學(xué)目標、實虛半軸、焦點、離心率、漸近線方程.●教學(xué)重點雙曲線的幾何性質(zhì)●教學(xué)難點雙曲線的漸近線●教學(xué)方法學(xué)導(dǎo)式●教具準備幻燈片、三角板●教學(xué)過程:師:上一節(jié),我們學(xué)習(xí)了雙曲
2024-12-16 01:51