【摘要】數(shù)列求和專題一、回顧整合:(一)、數(shù)列求和的方法:數(shù)列的求和,其關(guān)鍵是先求出數(shù)列的,然后根據(jù)的結(jié)構(gòu),選擇適當(dāng)?shù)那蠛头椒?(二)、數(shù)列求和的常用方法:1、公式法;2、分組轉(zhuǎn)化法;3、錯位相減法;4、裂項相消法;5、倒序相加法;6、并項法;二、題型突破:題型一:公式法常用的公式:(1)等差數(shù)列前n項和:Sn=
2025-01-20 19:51
【摘要】數(shù)列求和及綜合應(yīng)用主干知識整合2.?dāng)?shù)列求和的方法技巧(1)轉(zhuǎn)化法有些數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將數(shù)列通項拆開或變形,可轉(zhuǎn)化為幾個等差、等比數(shù)列或常見的數(shù)列,即先分別求和,然后再合并.(2)錯位相減法這是在推導(dǎo)等比數(shù)列的前n項和公式時所用的方法,這種方法主要用于求數(shù)列{an·bn
2025-01-14 14:00
【摘要】數(shù)列求和—裂項相消專題裂項相消的實質(zhì)是將數(shù)列中的每項(通項)分解,然后重新組合,使之能消去一些項,以達(dá)到求和的目的.常見的裂項相消形式有:1.┈┈(分母可分解為的系數(shù)相同的兩個因式)2.3.4.5.┈┈,,且,求數(shù)列的前n項的和.
2025-03-31 02:51
【摘要】數(shù)列求和的方法將一個數(shù)列拆成若干個簡單數(shù)列,然后分別求和.將數(shù)列相鄰的兩項(或若干項)并成一項(或一組)得到一個新數(shù)列(容易求和).一、拆項求和二、并項求和例求和Sn=1×2+2×3+…+n(n+1).例求和Sn=1-2+3-4+5-6+…+(-1)n+1
2024-11-19 05:50
【摘要】第五節(jié)數(shù)列求和基礎(chǔ)梳理數(shù)列求和的常用方法(1)公式法①直接用等差、等比數(shù)列的求和公式.②掌握一些常見的數(shù)列的前n項和.1+2+3+…+n=____________;1+3+5+…+(2n-1)=______.(1)2nn?n2(2)倒序相加法如果一個數(shù)列{
2024-11-20 18:12
【摘要】16.?dāng)?shù)列求和班級姓名一、選擇題:1.?dāng)?shù)列n3211,,3211,211,1?????????的前n項的和是()(A)1n2n2?(B)1n2n?(C)1nn2?(D)1nn2?2.等差數(shù)列{an}的通項
2024-08-13 00:42
【摘要】高考數(shù)學(xué)數(shù)列題型專題匯總一、選擇題1、已知無窮等比數(shù)列的公比為,前n項和為,,使得恒成立的是()(A)(B)(C)(D)【答案】B2、已知等差數(shù)列前9項的和為27,,則(A)100(B)99(C)98(D)97【答案】C3、定義“規(guī)范01數(shù)列”{an}如下:{
2024-08-18 18:39
2024-11-17 08:08
【摘要】......數(shù)列求和專題復(fù)習(xí)一、公式法:::;;例1:已知,求的前項和.例2:設(shè),,求的最大值.二
【摘要】第7講數(shù)列求和與數(shù)列綜合應(yīng)用第7講│數(shù)列求和與數(shù)列綜合應(yīng)用主干知識整合第7講│主干知識整合數(shù)列求和常用的方法(1)公式法:①等差數(shù)列求和公式;②等比數(shù)列求和公式.特別提示:運用等比數(shù)列求和公式,務(wù)必檢查其公比與1的關(guān)系,必要時需分類討論;③常用公式:1+2
2025-05-01 20:36
【摘要】 文科數(shù)學(xué)2020-2020高考真題分類訓(xùn)練專題六,數(shù)列,第十七講,遞推數(shù)列與數(shù)列求和—后附解析答案 專題六數(shù)列第十七講遞推數(shù)列與數(shù)列求和2020年1.(2020江蘇20)定義首項為1且公比為...
2025-01-14 05:24
【摘要】§等差數(shù)列一.課程目標(biāo);;,并能用等差數(shù)列的有關(guān)知識解決相應(yīng)的問題;.二.知識梳理如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示.數(shù)學(xué)語言表達(dá)式:an+1-an=d(n∈N*,d為常數(shù)),或an-an-1=d(n≥2,d為常數(shù)).2.
2025-03-31 06:56
【摘要】數(shù)列的求和高三備課組一、基本方法1.直接用等差、等比數(shù)列的求和公式求和。公比含字母是一定要討論無窮遞縮等比數(shù)列時,dnnnaaanSnn2)1(2)(11???????????????????)1
2024-11-18 00:27
【摘要】.高考數(shù)學(xué)數(shù)列題型專題匯總一、選擇題1、已知無窮等比數(shù)列的公比為,前n項和為,,使得恒成立的是()(A)(B)(C)(D)【答案】B2、已知等差數(shù)列前9項的和為27,,則(A)100(B)99(C)98(D)97【答案】C3、定義“規(guī)范01數(shù)列”{an}如下:
2024-08-18 00:48
【摘要】數(shù)列的求和數(shù)列求和的方法將一個數(shù)列拆成若干個簡單數(shù)列,然后分別求和.將數(shù)列相鄰的兩項(或若干項)并成一項(或一組)得到一個新數(shù)列(容易求和).一、拆項求和二、并項求和例求和Sn=1×2+2×3+…+n(n+1).例求和Sn=1-2+3-4+5-6+…+(-1)
2024-11-19 02:53