【摘要】中考第一輪復習:相似三角形友情提示:請根據課本相關內容,快速解決下列問題,5分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角形一邊的直線
2024-12-08 11:56
【摘要】問題1:相似三角形的有關概念(1).三個角對應_____、三條邊對應_______的兩個三角形叫做相似三角形(2).相似三角形的對應角_____,對應邊________.(3).相似比等于____的兩個三角形全等.相等成比例相等成比例1一、復習提問相似三角形的識別問:除定義之外,相似
2024-12-02 13:48
【摘要】相似三角形的判定定理:定理1:兩角對應相等,兩三角形相似。定理2:兩邊對應成比例且夾角相等,兩三角形相似。定理3:三邊對應成比例,兩三角形相似?!螦=∠A'∠B=∠B'△ABC∽△A'B'C'??△ABC∽△A'B'C'△ABC∽
2024-11-17 05:43
【摘要】一、下列各題有“病”嗎?如果有“病”,請寫出“病因”,沒有解答的,請你解答,并寫出你認為易讓別人犯錯的“陷阱”在哪兒?1:如圖1,要ΔADB∽ΔABC,那么還應增加的條件是_________.ACBD2:已知:如圖2,在□ABCD中,點E為邊CD上的一點,AE的延長線交BC的延長線于點F,請你寫出圖中的
2024-12-02 14:14
【摘要】相似三角形x是6、3、2的第四比例項,則x=_____;若2:(a-3)=(a-3):8,則a=________.:2x-5y=0,則x:y=_____;._______;????yxyyyx:AD∥BE∥CF,則=;=;=
2024-11-18 22:11
【摘要】相似三角形相似三角形?相似三角形的概念?相似三角形的基本性質?相似三角形的預備定理兩幅形狀相同大小不等的長城的圖片是相似的。ABCDEF△ABC與△DEF三個角對應相等,三條邊對應成比例的兩個三角形,做相似三角形(similartrianglec)AB
【摘要】相似三角形復習(2)△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是()A∠ACP=∠BB∠APC=∠ACBCAC2=AP·ABDAC:CP=AB:BCABCP2、如圖,D、E分別是AB、AC上兩點,CD與BE相
2024-11-17 12:54
【摘要】宇軒圖書下一頁上一頁末頁目錄首頁考點知識精講宇軒圖書下一頁上一頁末頁目錄首頁考點訓練中考典例精析舉一反三考點知識精講宇軒圖書下一頁上一
2025-05-07 22:19
【摘要】2016專題:《全等三角形證明》1.已知:D是AB中點,∠ACB=90°,求證:DABC2.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點,求證:∠1=∠2ABCDEF213.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE4.如圖,四邊形ABCD中
2025-03-30 07:41
【摘要】相似三角形復習(一)給你一個銳角三角形ABC和一條直線MN;問題你能用直線MN去截三角形ABC,使截得的三角形與原三角形相似嗎?相似三角形DE∥BC⊿ADE∽⊿ABCABAEACAD?∠DAE=∠CAB⊿ADE∽⊿ABC基本圖形判定方法∠AE
【摘要】復習課一、復習:1、相似三角形的定義是什么?答:對應角相等,對應邊成比例的兩個三角形叫做相似三角形.2、判定兩個三角形相似有哪些方法?答:A、用定義;B、用預備定理;C、用判定定理1、2、3.D、直角三角形相似的判定定理3、相似三角形有
2024-12-02 14:13
【摘要】ABCDEABC21OCBADOCDABABCDE△ABC與△DEF是相似三角形的是()A.B.∠B=∠E,C.∠C=∠F,D.∠C=∠F,∠A=∠DA
2024-12-07 10:09
【摘要】神河中學:陳波學習的目標?(1)通過復習,梳理本章知識,構建知識網絡.?(2)通過具體實例認識圖形的相似,探索相似圖形的性質,知道相似多邊形的對應角相等,對應邊成比例,面積的比等于對應邊的比的平方。?(3)了解兩個三角形相似的概念,探索兩個三角形相似的條件。?(4)了解圖形的位似,能
2024-12-02 17:38
【摘要】第22講┃相似三角形及其應用第22講┃考點聚焦考點聚焦考點1相似圖形的有關概念相似圖形形狀相同的圖形稱為相似圖形定義如果兩個多邊形滿足對應角相等,對應邊的比相等,那么這兩個多邊形相似相似多邊形相似比相似多邊形對應邊的比稱為相似比k相似三角形兩個三角形的對應角相
2025-05-06 03:04
【摘要】求三角形面積常用方法直接法ahS△=12ah等積法S1S2等比法S1=S2(等底同高)(同底等高)S1S212SaSb?(同高不同底)(浙教九上)如圖,DE∥BC,則△ADE與△ABC的相
2024-08-18 10:37