【摘要】《橢圓及其標(biāo)準(zhǔn)方程》教學(xué)設(shè)計(jì)設(shè)計(jì):黃福森福建省建寧縣第一中學(xué)點(diǎn)評(píng):盧梅豐永定坎市中學(xué)一、概述.《橢圓及其標(biāo)準(zhǔn)方程》是高中數(shù)學(xué)選修(人教版),分三課時(shí)完成.第一課時(shí)講解橢圓的定義及其標(biāo)準(zhǔn)方程;第二課時(shí)講解運(yùn)用橢圓的定義及其標(biāo)準(zhǔn)方程解題,鞏固求曲線方程的兩種基本方法,即待定系數(shù)法、定義法;第三課時(shí)講解運(yùn)用中間變量法求動(dòng)點(diǎn)軌跡方程的基本思路。。矚慫潤(rùn)厲釤瘞睞櫪廡賴賃。.本節(jié)
2024-07-28 00:08
【摘要】課題:§鹿城中學(xué)田光海一、教案背景::高中二年級(jí)學(xué)生:數(shù)學(xué):2課時(shí):高中新課程標(biāo)準(zhǔn)教科書(shū)《數(shù)學(xué)》北師大版選修1-1第二章圓錐曲線與方程§二.教材分析本節(jié)課是圓錐曲線的第一課時(shí),它是繼學(xué)生學(xué)習(xí)了直線和圓的方程,對(duì)曲線和方程的概念有了一些了解,對(duì)用坐標(biāo)法研究幾何問(wèn)題有了初步認(rèn)識(shí)的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)用坐標(biāo)法研究曲線。橢圓的學(xué)習(xí)可以為后面研究
2024-07-28 00:38
【摘要】奎屯王新敞新疆·2022·:/8320王新敞源頭學(xué)子小屋奎屯王新敞新疆·2022·:/8320王新敞源頭學(xué)子小屋奎屯王新敞新疆·2022·:/8320王新敞源頭學(xué)子小屋F1、F2兩點(diǎn),當(dāng)繩長(zhǎng)大于F1和F2的距離時(shí),用鉛筆尖把繩子拉緊,使筆尖在平面內(nèi)慢慢移動(dòng),問(wèn)筆尖畫(huà)出
2024-08-17 08:24
【摘要】Xupeisen110高中數(shù)學(xué) 橢圓及其標(biāo)準(zhǔn)方程一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生理解橢圓的定義,掌握橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)及標(biāo)準(zhǔn)方程.(二)能力訓(xùn)練點(diǎn)通過(guò)對(duì)橢圓概念的引入與標(biāo)準(zhǔn)方程的推導(dǎo),培養(yǎng)學(xué)生分析探索能力,增強(qiáng)運(yùn)用坐標(biāo)法解決幾何問(wèn)題的能力.(三)學(xué)科滲透點(diǎn)通過(guò)對(duì)橢圓標(biāo)準(zhǔn)方程的推導(dǎo)的教學(xué),可以提高對(duì)各種知識(shí)的綜合運(yùn)用能力.二
2024-08-17 17:50
2024-08-29 01:36
【摘要】《橢圓及其標(biāo)準(zhǔn)方程》(第一課時(shí)教案過(guò)程設(shè)計(jì))教師行為學(xué)生學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖(一)設(shè)置情境、問(wèn)題誘導(dǎo)【動(dòng)手作圖】請(qǐng)拿出預(yù)先準(zhǔn)備的卡紙,圖釘,細(xì)繩,以及鉛筆,將圖釘釘在圖紙上,壓住兩個(gè)線頭,用鉛筆拉著繩子畫(huà)出橢圓。動(dòng)畫(huà)演示畫(huà)橢圓的過(guò)程?!咎釂?wèn)】在我們的日常生活中,橢圓隨處可見(jiàn)。你能舉出橢圓形的例子嗎?在肯定學(xué)生的回答后,老師加以補(bǔ)充。比如:①嫦娥二號(hào)繞月球運(yùn)
2024-07-28 00:24
【摘要】課題:橢圓及其標(biāo)準(zhǔn)方程(一)主講人趙書(shū)鵬單位哈爾濱阿城區(qū)第一中學(xué)教學(xué)目標(biāo)知識(shí)與技能:①掌握橢圓的定義、焦點(diǎn)、焦距的概念,能由橢圓定義推導(dǎo)橢圓的標(biāo)準(zhǔn)方程.②通過(guò)橢圓標(biāo)準(zhǔn)方程的推導(dǎo),培養(yǎng)學(xué)生的運(yùn)算能力、歸納總結(jié)能力.過(guò)程與方法:采用從已有知識(shí)出發(fā),教師引導(dǎo),學(xué)生主動(dòng)探索得出橢圓的定義,用
2024-11-29 05:42
【摘要】橢圓的標(biāo)準(zhǔn)方程和性質(zhì)(第一課時(shí))教學(xué)課型:復(fù)習(xí)課教學(xué)方法:考綱、提綱指引法,精講多練法一、教學(xué)目標(biāo)1、知識(shí)目標(biāo):A識(shí)記:①記住橢圓的定義和相關(guān)性質(zhì);②區(qū)分橢圓的兩種類型的標(biāo)準(zhǔn)方程及其對(duì)應(yīng)的圖形;③能根據(jù)a、b、c的值和不同焦點(diǎn)位置寫(xiě)出橢圓的標(biāo)準(zhǔn)方程。B理解:①理解橢圓的焦點(diǎn)、頂點(diǎn),長(zhǎng)
2024-07-28 03:17
【摘要】橢圓及其標(biāo)準(zhǔn)方程?作者:張曉娟?單位:數(shù)學(xué)與信息學(xué)院03級(jí)8班?指導(dǎo)老師:潘大志一.復(fù)習(xí)引入①我們以前學(xué)過(guò)圓,那么我們是怎么用軌跡來(lái)定義圓呢?圓:平面內(nèi)到一定點(diǎn)的距離為常數(shù)的點(diǎn)的軌跡是圓。②那如果將到一定點(diǎn)的距離改為到兩定點(diǎn)的距離之和等于常數(shù)呢?此時(shí)的軌跡又會(huì)是一個(gè)什么樣的
2024-11-26 00:35
【摘要】設(shè)置情境問(wèn)題誘導(dǎo)2022年9月25日晚21時(shí)10分04秒,“神舟七號(hào)”載人飛船在酒泉衛(wèi)星發(fā)射中心發(fā)射升空,實(shí)現(xiàn)了太空行走,標(biāo)志著我國(guó)航天事業(yè)又上了一個(gè)新臺(tái)階。請(qǐng)問(wèn):“神舟七號(hào)”載人飛船的運(yùn)行軌道是什么?神舟七號(hào)在進(jìn)入太空后,先以遠(yuǎn)地點(diǎn)347公里、近地點(diǎn)200公里的橢圓軌道運(yùn)行,后經(jīng)過(guò)變軌調(diào)整為距地343公
2024-08-07 10:44
【摘要】橢圓及其標(biāo)準(zhǔn)方程生活中有哪些橢圓形狀的物體呢?自然界中處處存在著橢圓,你能夠畫(huà)出一個(gè)規(guī)范的橢圓嗎?畫(huà)橢圓圓的定義:平面上到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓.?如何定義橢圓?橢圓的定義:平面上到兩個(gè)定點(diǎn)F1,F2的距離之和為固定值(大于|F1F2|)的點(diǎn)的軌跡叫作橢圓.這兩個(gè)定點(diǎn)叫做
2024-08-01 20:28
【摘要】精品資源橢圓及其標(biāo)準(zhǔn)方程 一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生理解橢圓的定義,掌握橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)及標(biāo)準(zhǔn)方程.(二)能力訓(xùn)練點(diǎn)通過(guò)對(duì)橢圓概念的引入與標(biāo)準(zhǔn)方程的推導(dǎo),培養(yǎng)學(xué)生分析探索能力,增強(qiáng)運(yùn)用坐標(biāo)法解決幾何問(wèn)題的能力.(三)學(xué)科滲透點(diǎn)通過(guò)對(duì)橢圓標(biāo)準(zhǔn)方程的推導(dǎo)的教學(xué),可以提高對(duì)各種知識(shí)的綜合運(yùn)用能力.二、教材分析1.重點(diǎn):橢圓的定義和橢圓的標(biāo)準(zhǔn)方程
2025-07-20 16:55
【摘要】一預(yù)習(xí)目標(biāo)理解橢圓的定義,掌握橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)及標(biāo)準(zhǔn)方程.二預(yù)習(xí)內(nèi)容?求曲線方程的一般步驟是什么?其中哪幾個(gè)步驟必不可少?.?你能否可類似地提出一些軌跡命題作廣泛的探索?3.橢圓的定義:----------------------------------------------------------------?,兩焦點(diǎn)的距離叫做
2024-08-17 07:22
【摘要】選修1-1橢圓及其標(biāo)準(zhǔn)方程一、選擇題1.(2021·上海)設(shè)P是橢圓x225+y216=1上的點(diǎn),若F1、F2是橢圓的兩個(gè)焦點(diǎn),則|PF1|+|PF2|等于()A.4B.5C.8D.10[答案]D[解析]∵橢圓長(zhǎng)軸2a=10,∴|P
2024-11-30 22:00
【摘要】奎屯王新敞新疆·2022·:/8320王新敞源頭學(xué)子小屋?教學(xué)目標(biāo):?(1)掌握求橢圓標(biāo)準(zhǔn)方程的待定系數(shù)法和定義法.?(2)能運(yùn)用橢圓的定義和標(biāo)準(zhǔn)方程的知識(shí)解決有關(guān)問(wèn)題.?重點(diǎn):用待定系數(shù)法和定義法求曲線方程.?難點(diǎn):橢圓方程有兩解?易錯(cuò)點(diǎn):利用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程時(shí)注意焦點(diǎn)所在的坐標(biāo)軸.
2024-08-17 10:00