【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)最大值、最小值問(wèn)題第1課時(shí)練習(xí)北師大版選修1-1一、選擇題1.函數(shù)y=x-sinx,x∈??????π2,π的最大值是()A.π-1B.π2-1C.πD.π+1[答案]C[解析]f′(x)=1-cosx≥0,
2024-12-06 19:11
【摘要】最大值、最小值問(wèn)題(二)雙基達(dá)標(biāo)?限時(shí)20分鐘?1.將長(zhǎng)度是8的均勻直鋼條截成兩段,使其立方和最小,則分法為().A.2與6B.4與4C.3與5D.以上均錯(cuò)解析設(shè)一段長(zhǎng)為x,則另一段為8-x,其中0x8.設(shè)y=x3+(8-x)3,則y′=3x2-
2024-12-11 00:13
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第3章2第2課時(shí)最大值、最小值問(wèn)題課時(shí)作業(yè)北師大版選修2-2一、選擇題1.函數(shù)f(x)=x(1-x2)在[0,1]上的最大值為()A.239B.229C.329D.38[答案]A[解析]f(x)=x-x3,f′(
2024-12-13 06:27
【摘要】最大值、最小值問(wèn)題學(xué)習(xí)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請(qǐng)函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力.學(xué)習(xí)重點(diǎn):求函數(shù)的最值及求實(shí)際問(wèn)題的最值.學(xué)習(xí)難點(diǎn):求實(shí)際問(wèn)題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問(wèn)題“數(shù)學(xué)化”,即建立數(shù)學(xué)模型.學(xué)
2024-12-13 06:35
【摘要】【課堂新坐標(biāo)】(教師用書(shū))2021-2021學(xué)年高中數(shù)學(xué)最大值與最小值課后知能檢測(cè)蘇教版選修1-1一、填空題1.函數(shù)f(x)=4x-x4在[-1,2]上的最大值是________.【解析】f′(x)=4-4x3,令f′(x)=0得x=1,又當(dāng)x1時(shí),f′(x)0,x1時(shí)
2024-12-12 18:01
【摘要】第3課時(shí)函數(shù)的最大值與最小值,了解其與函數(shù)極值的區(qū)別與聯(lián)系.[a,b]上連續(xù)的函數(shù)f(x)的最大值和最小值的方法和步驟.如圖,設(shè)鐵路線AB=50km,點(diǎn)C處與B之間的距離為10km,現(xiàn)將貨物從A運(yùn)往C,已知1km鐵路費(fèi)用為2元,1km公路費(fèi)用為4元,在AB上M處修筑公
2024-11-27 23:14
【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點(diǎn)的函數(shù)值都大,我們就說(shuō)f(x0)是函數(shù)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)。如果f(x0)的值比x0附近所有各點(diǎn)的函數(shù)值都小,我們就說(shuō)f(x0)是函數(shù)的一個(gè)極小值。記作y極小值=f(x0),x0是極小值點(diǎn)。極大
2024-11-26 08:47
【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點(diǎn)的函數(shù)值都大,我們就說(shuō)f(x0)是函數(shù)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)。如果f(x0)的值比x0附近所有各點(diǎn)的函數(shù)值都小,我們就說(shuō)f(x0)是函數(shù)的一個(gè)極小值。記作y極小值=f(x0),x0是極小值點(diǎn)
2024-11-27 13:08
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用第10課時(shí)函數(shù)的最大值與最小值教學(xué)目標(biāo):;和步驟.教學(xué)重點(diǎn):利用導(dǎo)數(shù)求函數(shù)的最大值和最小值的方法教學(xué)難點(diǎn):函數(shù)的最大值、最小值與函數(shù)的極大值和極小值的區(qū)別與聯(lián)系教學(xué)過(guò)程:Ⅰ.問(wèn)題情境Ⅱ.建構(gòu)數(shù)學(xué):::
2024-11-27 17:30
【摘要】xX2oaX3bx1y函數(shù)的最大與最小值(5月8日)教學(xué)目標(biāo):1、使學(xué)生掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(diǎn)(包括端點(diǎn)ba,)處的函數(shù)中的最大(或最?。┲担?、使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)重點(diǎn):掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)難點(diǎn):提高“用導(dǎo)數(shù)求函數(shù)的極值及
2024-12-16 01:48
【摘要】江蘇省建陵高級(jí)中學(xué)2020-2020學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)在研究函數(shù)在的應(yīng)用(最大值與最小值)導(dǎo)學(xué)案(無(wú)答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1、使學(xué)生掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(diǎn)(包括端點(diǎn)ba,)處的函數(shù)中的最大(或最?。┲?;2、使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的最大值與最小值的方法【課前預(yù)習(xí)】
2024-11-28 00:30
【摘要】1.3.3函數(shù)的最大值與最小值(一)一、教學(xué)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請(qǐng)函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力.二、教學(xué)重點(diǎn):求函數(shù)的最值及求實(shí)際問(wèn)題的最值.教學(xué)難點(diǎn):求實(shí)際問(wèn)題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問(wèn)題“數(shù)學(xué)化”
2024-11-27 19:27
【摘要】§函數(shù)的最大值與最小值高三數(shù)學(xué)選修(Ⅱ)第三章導(dǎo)數(shù)與微分MaximumValue&MinimumValueofFunction實(shí)際問(wèn)題如圖,有一長(zhǎng)80cm寬60cm的矩形不銹鋼薄板,用此薄板折成一個(gè)長(zhǎng)方體無(wú)蓋容器,要分別過(guò)矩形四個(gè)頂點(diǎn)處各挖去一個(gè)全等的小正方形,按加工要求,長(zhǎng)方體的高不小
2024-11-18 00:27
【摘要】若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),但此隱函數(shù)不易顯化.則稱此函數(shù)為隱函數(shù).第三節(jié)隱函數(shù)的導(dǎo)數(shù)和由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)0),(?yxF
2024-08-14 16:24
【摘要】(1)基本不等式(2)基本不等式的最大值與最小值對(duì)于任意實(shí)數(shù)x,y,(x-y)2≥0總是成立的,即x2-2xy+y2≥0所以,當(dāng)且僅當(dāng)x=y時(shí)等號(hào)成立22x+y≥xy2如果a,b都是正數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.a+b≥ab2,,
2024-08-07 16:08