【摘要】導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值適用學(xué)科高中數(shù)學(xué)適用年級(jí)高中三年級(jí)適用區(qū)域通用課時(shí)時(shí)長(zhǎng)(分鐘)60知識(shí)點(diǎn)函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值教學(xué)目標(biāo)掌握函數(shù)的單調(diào)性求法,會(huì)求函數(shù)的函數(shù)的極值,會(huì)求解最值問(wèn)題,教學(xué)重點(diǎn)會(huì)利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性,會(huì)求解函數(shù)的最值。教學(xué)難點(diǎn)熟練掌握函數(shù)的單調(diào)性、極值、最值的求法,以及分類討論思想的應(yīng)用
2024-08-08 05:39
【摘要】課題:導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值科目:數(shù)學(xué)教學(xué)對(duì)象:高三課時(shí)第1課時(shí)提供者:段秀香單位:靜海第六中學(xué)一、教學(xué)內(nèi)容分析 現(xiàn)在中學(xué)數(shù)學(xué)新教材中,導(dǎo)數(shù)(選修2-2)處于一種特殊的地位,是高中數(shù)學(xué)知識(shí)的一個(gè)重要交匯點(diǎn),是聯(lián)系多個(gè)章節(jié)內(nèi)容以及解決相關(guān)問(wèn)題的重要工具。天津高考中必有考一道解答題(如2009-2011年常規(guī)題或2012-2014年壓軸題)和一道選擇
2025-04-23 00:39
【摘要】1.設(shè)函數(shù)。(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。(2)若在上的最大值為,求a的值。解:對(duì)函數(shù)求導(dǎo)得:,定義域?yàn)椋?,2)當(dāng)a=1時(shí),令當(dāng)為增區(qū)間;當(dāng)為減函數(shù)。當(dāng)有最大值,則必不為減函數(shù),且0,為單調(diào)遞增區(qū)間。最大值在右端點(diǎn)取到。。2.已知函數(shù)其中實(shí)數(shù)。(I)若a=2,求曲線在點(diǎn)處的切線方程;(II)若在x=1處取得極值,試討論的單調(diào)
2025-03-30 07:03
【摘要】復(fù)習(xí)1、某點(diǎn)處導(dǎo)數(shù)的定義——這一點(diǎn)處的導(dǎo)數(shù)即為這一點(diǎn)處切線的斜率2、某點(diǎn)處導(dǎo)數(shù)的幾何意義——3、導(dǎo)函數(shù)的定義——4、由定義求導(dǎo)數(shù)的步驟(三步法)5、求導(dǎo)的公式與法則——如果函數(shù)f(x)、g(x)有導(dǎo)數(shù),那么6、求導(dǎo)的方法——
2024-11-14 23:03
【摘要】天津市2018屆高三數(shù)學(xué)函數(shù)單調(diào)性與最值學(xué)校:___________姓名:___________班級(jí):___________考號(hào):___________1.若是上的單調(diào)遞增函數(shù),則實(shí)數(shù)的取值范圍為()A.B.C.D.2.已知函數(shù)在區(qū)間上是增函數(shù),則的取值范圍是()A.B.C.
2025-03-31 07:09
【摘要】.三、知識(shí)新授(一)函數(shù)極值的概念(二)函數(shù)極值的求法:(1)考慮函數(shù)的定義域并求f'(x);(2)解方程f'(x)=0,得方程的根x0(可能不止一個(gè))(3)如果在x0附近的左側(cè)f'(x)0,右側(cè)f'(x)&
2024-08-08 05:40
【摘要】第三節(jié)一、函數(shù)單調(diào)性的判定法二、簡(jiǎn)單應(yīng)用函數(shù)的單調(diào)性第三章2x1()fx2()fxy=?(x)oxxyyo1x1x2x1()fx2()fxy=?(x)用定義來(lái)判斷函數(shù)的單調(diào)性有比較法、比值法.但繁!下面討論如何用導(dǎo)數(shù)來(lái)判斷函數(shù)的單調(diào)性.反之
2025-02-27 12:40
【摘要】第二章第三節(jié)函數(shù)的單調(diào)性與最值一、選擇題1.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是( )A.y=x3 B.y=|x|+1C.y=-x2+1 D.y=2-|x|2.下列函數(shù)f(x)中,滿足“對(duì)任意x1,x2∈(0,+∞),當(dāng)x1f(x2)”的是( )A.f(x)=
2025-03-30 12:17
【摘要】函數(shù)的單調(diào)性和最值考試要求1、函數(shù)單調(diào)區(qū)間的判定2、利用函數(shù)單調(diào)性求最值典題精講板塊一:函數(shù)的單調(diào)性與單調(diào)區(qū)間1、增函數(shù)、減函數(shù)增函數(shù)減函數(shù)定義一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)某個(gè)區(qū)間D上的任意兩個(gè)自變量x1,x2當(dāng)x1x2時(shí),都有____________,那么就說(shuō)函數(shù)f(x
2025-05-22 07:45
【摘要】題型三極值最值型極大值極小值⑴在包含x0的一個(gè)區(qū)間(a,b)內(nèi),函數(shù)y=f(x)在任何一點(diǎn)的函數(shù)值都小于x0點(diǎn)的函數(shù)值,稱點(diǎn)x0為函數(shù)y=f(x)的極大值點(diǎn),其函數(shù)值f(x0)為函數(shù)的極大值;⑵在包含x0的一個(gè)區(qū)間(a,b)內(nèi),函數(shù)y=f(x)在任何一點(diǎn)的函數(shù)值都大于x0點(diǎn)的函數(shù)值,稱點(diǎn)x0為函數(shù)y=f(x)的極小值點(diǎn),其函數(shù)值f(x0)為函數(shù)的極小值;⑶極大值
2024-08-08 14:27
【摘要】(?。┲?、函數(shù)單調(diào)性的定義設(shè)函數(shù)y=f(x)的定義域?yàn)镮:如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間D上的任意兩個(gè)自變量的值,(1)當(dāng)時(shí),都有,那么就說(shuō)函數(shù)f(x)在區(qū)間D上是增函數(shù):(2)當(dāng)時(shí),都有,那么就說(shuō)函數(shù)f(x)在區(qū)間D上是減函數(shù)。注意:具有三個(gè)特征:①屬于同一區(qū)間②任
2025-06-24 22:01
【摘要】函數(shù)單調(diào)的概念?我們?cè)诤瘮?shù)的基本性質(zhì)中曾經(jīng)討論過(guò)函數(shù)的單調(diào)性問(wèn)題,在此我們?cè)俅位仡櫼幌潞瘮?shù)單調(diào)的定義。?定義設(shè)函數(shù)f(x)在區(qū)間(a,b)上有定義,如果對(duì)于區(qū)間(a,b)內(nèi)的任意兩點(diǎn)x1,x2,滿足?(1)當(dāng)x1x2時(shí),恒有f(x1)?f(x2)(或f(x1)f(x2))
2024-08-28 20:29
【摘要】Email:lihongqing999@:570206海口市海秀大道59號(hào)海南華僑中學(xué)李紅慶工作室函數(shù)的單調(diào)性與最值漫談海南華僑中學(xué)黃玲玲函數(shù)的單調(diào)性與最值是中學(xué)數(shù)學(xué)的核心內(nèi)容.從中學(xué)數(shù)學(xué)知識(shí)的網(wǎng)絡(luò)來(lái)看,函數(shù)的單調(diào)性與最值在中學(xué)數(shù)學(xué)中起著“紐帶”的作用,她承前于函數(shù)的值域、方程有解的條件、不等式證明,啟后于數(shù)列的最值問(wèn)題、導(dǎo)數(shù)的應(yīng)用等知識(shí).例如:求函數(shù)的值域,令,則,,則函
2025-05-22 01:34
【摘要】精銳教育學(xué)科教師輔導(dǎo)講義學(xué)員編號(hào):年級(jí):高二課時(shí)數(shù):學(xué)員姓名:張欣蕾輔導(dǎo)科目:數(shù)學(xué)學(xué)科教師:李欣授課類型T導(dǎo)數(shù)與函數(shù)極值與最值CT
2025-05-22 08:26
【摘要】上頁(yè)下頁(yè)返回第1頁(yè)第二、三節(jié)函數(shù)的單調(diào)性與極值、最大值與最小值一、函數(shù)單調(diào)性的判別法二、函數(shù)的極值及其求法三、函數(shù)的最大值和最小值第三章導(dǎo)數(shù)的應(yīng)用目錄后退主頁(yè)退出本節(jié)知識(shí)引入本節(jié)目的與要求本節(jié)重點(diǎn)
2024-08-14 17:50