【摘要】2020年12月17日星期四新疆王新敞特級(jí)教師源頭學(xué)子小屋htp:/htp:/如圖為某地某日24小時(shí)內(nèi)的氣溫變化圖.觀察這張氣溫變化圖,觀察圖形,你能得到什么信息?問題引入321,xyxyx???問題分別作出函數(shù)y=2以及的圖象,并且觀察當(dāng)自變量變化
2024-11-18 00:49
【摘要】第2課時(shí)知識(shí)回顧一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮:如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1<x2時(shí)(1)都有f(x1)<f(x2),則f(x)在這個(gè)區(qū)間D上是增函數(shù).(如圖1)(2)都有f(x1)f(x2),那么就說f(
2024-11-19 21:10
【摘要】函數(shù)單調(diào)的概念?我們?cè)诤瘮?shù)的基本性質(zhì)中曾經(jīng)討論過函數(shù)的單調(diào)性問題,在此我們?cè)俅位仡櫼幌潞瘮?shù)單調(diào)的定義。?定義設(shè)函數(shù)f(x)在區(qū)間(a,b)上有定義,如果對(duì)于區(qū)間(a,b)內(nèi)的任意兩點(diǎn)x1,x2,滿足?(1)當(dāng)x1x2時(shí),恒有f(x1)?f(x2)(或f(x1)f(x2))
2024-08-28 20:29
【摘要】函數(shù)單調(diào)性的應(yīng)用?教學(xué)目的?重點(diǎn)難點(diǎn)?教學(xué)過程?退出教學(xué)目的?使學(xué)生通過對(duì)知識(shí)的運(yùn)用加深對(duì)知識(shí)的理解與掌握。?在問題解決的過程中滲透數(shù)形結(jié)合的思想方法和運(yùn)動(dòng)、變化的觀點(diǎn)。?引導(dǎo)學(xué)生挖掘知識(shí)的作用,提高運(yùn)用知識(shí)分析問題和解決問題的能力。?返回重點(diǎn)難點(diǎn)
2024-11-20 01:38
【摘要】第二課時(shí)函數(shù)單調(diào)性的性質(zhì)單調(diào)性與最大(?。┲祮栴}提出1.函數(shù)在區(qū)間D上是增函數(shù)、減函數(shù)的定義是什么?)(xf3.增函數(shù)、減函數(shù)有那些基本性質(zhì)?2.增函數(shù)、減函數(shù)的圖象分別有何特征?知識(shí)探究(一)1212()()0fxfxxx???若
2024-08-29 01:33
【摘要】第一篇:高一數(shù)學(xué)《函數(shù)的單調(diào)性與最值》第二課時(shí)教案 函數(shù)的單調(diào)性與最值 學(xué)習(xí)目標(biāo): ,它是函數(shù)單調(diào)性的應(yīng)用。。 。知識(shí)重現(xiàn) 1、一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,如果存在實(shí)數(shù)M滿足:(1)...
2024-11-04 12:50
【摘要】第三節(jié)函數(shù)的單調(diào)性與最值基礎(chǔ)梳理:在函數(shù)y=f(x)的定義域內(nèi)的一個(gè)區(qū)間A上,如果對(duì)于任意兩個(gè)數(shù)x1,x2A,當(dāng)x1x2時(shí),都有________________,那么就說f(x)在_______上是增加的(減少的).注意:(1)函數(shù)的單調(diào)性是在________內(nèi)
2024-11-20 01:26
【摘要】第一篇:高一數(shù)學(xué)函數(shù)的單調(diào)性教案 函數(shù)的單調(diào)性 教學(xué)目標(biāo) 1.使學(xué)生理解函數(shù)單調(diào)性的概念,并能判斷一些簡(jiǎn)單函數(shù)在給定區(qū)間上的單調(diào)性.2.通過函數(shù)單調(diào)性概念的教學(xué),培養(yǎng)學(xué)生分析問題、認(rèn)識(shí)問題的能力...
【摘要】函數(shù)的單調(diào)性和最值考試要求1、函數(shù)單調(diào)區(qū)間的判定2、利用函數(shù)單調(diào)性求最值典題精講板塊一:函數(shù)的單調(diào)性與單調(diào)區(qū)間1、增函數(shù)、減函數(shù)增函數(shù)減函數(shù)定義一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)某個(gè)區(qū)間D上的任意兩個(gè)自變量x1,x2當(dāng)x1x2時(shí),都有____________,那么就說函數(shù)f(x
2025-05-22 07:45
【摘要】第一篇:高一數(shù)學(xué)教案:函數(shù)單調(diào)性 教學(xué)目標(biāo) 會(huì)運(yùn)用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡(jiǎn)單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。 重點(diǎn) 函數(shù)單調(diào)性的證明及判斷...
【摘要】?1.判斷正誤:?(1)若函數(shù)f(x)在區(qū)間(a,b)和(c,d)上均為增函數(shù),則函數(shù)f(x)在區(qū)間(a,b)∪(c,d)上也是增函數(shù).?(2)若函數(shù)f(x)和g(x)在各自的定義域上均為增函數(shù),則f(x)+g(x)在它們定義域的交集(非空)上是增函數(shù).?[答案](1)×(
2024-11-18 12:26
【摘要】廣東省深圳市第三高級(jí)中學(xué)數(shù)學(xué)必修一《函數(shù)的最大(小)值》課件一、問題導(dǎo)入的,在減區(qū)間上時(shí)隨著自變量的增大而降低的,那么函數(shù)的圖象有最高點(diǎn)和最低點(diǎn)嗎?2.函數(shù)圖象上升與下降反映了函數(shù)的單調(diào)性,如果函數(shù)的圖象存在最高點(diǎn)或最低點(diǎn),它又反映了函數(shù)的什么性質(zhì)?二、探索新知——最大值觀察下列兩個(gè)函數(shù)圖象:思考1:這兩
2024-11-21 12:03
【摘要】導(dǎo)數(shù)單調(diào)性、極值、最值教學(xué)目標(biāo):掌握運(yùn)用導(dǎo)數(shù)求解函數(shù)單調(diào)性的步驟與方法重點(diǎn)難點(diǎn):能夠判定極值點(diǎn),并能求解閉區(qū)間上的最值問題利用導(dǎo)數(shù)研究函數(shù)的極值、最值:(1)求導(dǎo)數(shù);(2)解方程;(3)使不等式成立的區(qū)間就是遞增區(qū)間,使成立的區(qū)間就是遞減區(qū)間。,右側(cè)____0,那么是的極大值;如果在根附近的左側(cè)____0,右側(cè)____0,那么是的極小值典型例題:
2025-08-01 05:39
【摘要】Email:lihongqing999@:570206??谑泻P愦蟮?9號(hào)海南華僑中學(xué)李紅慶工作室函數(shù)的單調(diào)性與最值漫談海南華僑中學(xué)黃玲玲函數(shù)的單調(diào)性與最值是中學(xué)數(shù)學(xué)的核心內(nèi)容.從中學(xué)數(shù)學(xué)知識(shí)的網(wǎng)絡(luò)來看,函數(shù)的單調(diào)性與最值在中學(xué)數(shù)學(xué)中起著“紐帶”的作用,她承前于函數(shù)的值域、方程有解的條件、不等式證明,啟后于數(shù)列的最值問題、導(dǎo)數(shù)的應(yīng)用等知識(shí).例如:求函數(shù)的值域,令,則,,則函
2025-05-22 01:34
【摘要】利用函數(shù)的單調(diào)性(最值)求參數(shù)的取值范圍例1.已知函數(shù)),0()(2Raxxaxxf????,若)(xf在????,2上為增函數(shù),求實(shí)數(shù)a的取值范圍.跟蹤訓(xùn)練:1.已知函數(shù)????????,2),0()(2xaxaxxf上遞增,求實(shí)數(shù)a的取值范圍.2.若函數(shù)xxm
2024-11-17 06:38