freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

hd600多向混合機(jī)的設(shè)計(jì)畢業(yè)設(shè)計(jì)-文庫(kù)吧資料

2025-07-05 07:55本頁(yè)面
  

【正文】 acturing, and quality assurance of beveloid gears. Flank modifications, which are necessary for achieving a high load capacity and a low noise emission in the conical gears, can be produced with the continuous generation grinding process. In order to reduce the manufacturing costs, the machine settings as well as the flank deviations caused by the grinding process can be calculated in the design phase using a manufacturing simulation. This presentation gives an overview of the development of conical gears for power transmissions: Basic geometry, design of macro and micro geometry, simulation, manufacturing, gear measurement, and testing.1 IntroductionIn transmissions with shafts that are not arranged parallel to the axis, torque transmission ispossible by means of various designs such as bevel or crown gears , universal shafts , or conical involute gears (beveloids). The use of conical involute gears is particularly ideal for small shaft angles (less than 15176。完成的齒輪(具有制造偏差和齒側(cè)修形)參考文獻(xiàn):1. J. A. MacBain, J. J. Conover, and A. D. Brooker, “Fullvehicle simulation for series hybrid vehicles,” presented at the SAE Tech. Paper, Future Transportation Technology Conf., Costa Mesa, CA, Jun. 2003, Paper 2003012301.2. X. He and I. Hodgson,“Hybrid electric vehicle simulation and evaluation for UTHEV,”prmented at the SAE Tech. Paper Series, Future Transpotation Technology Conf., Costa Mesa, CA, Aug. 2000, Paper 2000013105.3. K. E. Bailey and B. K. Powell,“A hybrid electric vehicle powertrain dynamic model,”inProc. Amer. Control Conf., Jun. 2123, 1995, vol. 3, pp. 16771682.4. B. K. Powell, K. E. Bailey, and S. R. Cikanek,“Dynamic modeling and control of hybrid electrie vehicle powertrain system,”IEEE Control Syst. Mag., vol, 18, no. 5. pp. 1733, Oct. 1998.5. K. L. Butler, M. Ehsani, and P. Kamath,“A Matlabbared modeling and simulation package for electric and hybrid electric vehicle design,”IEEE Trans. ., vol. 48, no. 6, pp. 17701778, Nov. 1999.6. K. B. Wipke, M. R. Cuddy, and S. D. Burch,“ADVISOR : A userfriendly advanced powertrain simulation using a bined backward/forward approach,” IEEE Trans. Veh. Technol., vol. 48. no. 6, , Nov. 1999.7. T. Markel and K. Wipke,“Modeling gridconnected hybrid electric vehicles using ADVISOR,” Annu. Battery Conf. Appl. and Adv.,Jan. . pp. 2329.8. S. M. Lukic and A. Emadi,“Effects of drivetrain hybridization on fuel economy and dynamic performance of parallel hybrid electric vehicles,”IEEE Trans. ., vol. 53, no. 2, pp. 385389, Mar. 2004.9. A. Emadi and S. Onoda,“PSIMbased modeling of automotive power systems: Conventional, electric, and hybrid electric vehicles,”IEEE Trans. Veh. Technol.,vol. 53, no. 2, pp. 390400, Mar. 2004.10. J. M. Tyrus, R. M. Long, M. Kramskaya, Y. Fertman, and A. Emadi,“Hybrid electric sport utility vehicles,”IEEE Trans. Veh. Technol., vol. 53, no. 5,pp. 16071622, Sep. 2004.附件2:外文原文 [ABSTRACT] Conical involute gears (beveloids) are used in transmissions with intersecting or skew axes and for backlashfree transmissions with parallel axes. Conical gears are spur or helical gears with variable addendum modification (tooth thickness) across the face width. The geometry of such gears is generally known, but applications in power transmissions are more or less exceptional. ZF has implemented beveloid gear sets in various applications: 4WD gear units for passenger cars, marine transmissions (mostly used in yachts), gear boxes for robotics, and industrial drives. The module of these beveloids varies between mm and 8 mm in size, and the crossed axes angle varies between 0176。 原始齒輪(留有磨削所需的余量) 174。因此該方法可在很大程度上補(bǔ)償齒廓扭曲并可承受比圓柱齒輪更大的載荷。雙齒側(cè)范成法磨削工藝并利用中心距弧形減少方法可實(shí)現(xiàn)齒溝凸起的目標(biāo)。如果齒輪錐角處于機(jī)床控制范圍內(nèi),拓?fù)淠ハ鞴に囈彩强赡艿?例如5軸機(jī)床),但是會(huì)耗費(fèi)巨大的努力。對(duì)于終加工,范成法螺旋磨削是一個(gè)最佳選擇。如果內(nèi)齒輪利用軸線傾斜的小齒輪刀具如同加工差速器錐齒輪那樣來(lái)制造的話,將導(dǎo)致齒溝凸起和無(wú)修正運(yùn)動(dòng)的齒廓扭曲。理論上也可采用刨削,但是,所需的運(yùn)動(dòng)在現(xiàn)有機(jī)床上很難實(shí)現(xiàn)。盡管是錐角非常小的斜面體齒輪,必須承認(rèn)在修整處理中仍然會(huì)出現(xiàn)齒廓角度偏差。斜面體齒輪制造仿真軟件由ZF公司開(kāi)發(fā),詳見(jiàn)[9]。6 仿真制造借助于仿真制造,可獲得機(jī)床設(shè)置及連續(xù)范成磨削和產(chǎn)生齒廓扭曲的運(yùn)動(dòng)。在進(jìn)行承載能力試驗(yàn)的同時(shí),傳動(dòng)誤差和旋轉(zhuǎn)加速度的測(cè)量在通用噪聲試驗(yàn)臺(tái)上進(jìn)行,圖17。值得注意的是,由于大端硬度提高使得載荷曲線圖朝大端由一個(gè)額外的移動(dòng)。試驗(yàn)齒輪采用不同的修正,以確定它們對(duì)承載能力的影響。可對(duì)多個(gè)嚙合位置進(jìn)行計(jì)算,并能求出齒輪旋轉(zhuǎn)產(chǎn)生的傳動(dòng)誤差。圖14是齒輪橫斷面建模的實(shí)例。在傳動(dòng)誤差方面,斜面體齒輪接觸計(jì)算的不精確性是一個(gè)比載荷分布更大的影響因素?! ≥嘄X接觸分析也將生成一個(gè)作為激振源的由輪齒嚙合產(chǎn)生的傳動(dòng)誤差。在這里,接觸線由替代齒輪所確定,它們和斜面體齒輪的接觸狀況稍有不同。同樣采用替代齒輪,而且齒側(cè)處接觸狀況被認(rèn)為非常理想。齒寬橫截面上的載荷分布可用齒寬系數(shù)(例如DIN/ISO標(biāo)準(zhǔn)中的K和K)表示和利用補(bǔ)充的負(fù)載曲線圖分析來(lái)確定。然而,大端處的齒高變位量也隨之變小。由于沿大端方向減小輪齒齒根圓角半徑所產(chǎn)生較大的凹口效應(yīng)阻止了根部齒厚的增加。當(dāng)計(jì)及齒寬橫截面時(shí),各項(xiàng)獨(dú)立的參數(shù)都會(huì)變化,這將明顯影響承載能力。雖然斜面體齒輪齒廓是非對(duì)稱的,但在替代齒輪中可不予考慮。5 承載能力和噪聲激勵(lì) 計(jì)算標(biāo)準(zhǔn)的應(yīng)用  斜面體齒輪齒側(cè)和根部承載能力僅可用圓柱齒輪的計(jì)算標(biāo)準(zhǔn)(ISO 6336, DIN 3990, AGMAC95) 作近似估算。與范成法磨削方法無(wú)關(guān),齒側(cè)修正可采用諸如珩磨等手段。利用其它錐角如根錐角進(jìn)行齒頂修形加工也是可行的。因此齒頂修形在小端明顯大于大端。然而,斜面體齒輪的齒頂修形在齒寬橫截面上的加工總量上和長(zhǎng)度上是不同的。除間隙補(bǔ)償外,齒頂修形也是有益的。采用修正后的接觸率得到了很大改善如圖12所示?!↓X側(cè)修形對(duì)于一定程度的補(bǔ)償而言,必需的齒面形狀可由實(shí)際間隙所決定。為補(bǔ)償齒輪嚙合中所存在的間隙,必須采用齒側(cè)拓?fù)湫扌?該類(lèi)修形可明顯補(bǔ)償螺旋凸形和輪廓扭曲。隨螺旋角增加齒廓扭曲也隨之增加。如果正交的軸線進(jìn)一步擴(kuò)大直至變成圓柱交叉軸螺旋齒輪副的話,其兩側(cè)間隙等同于較小的螺旋凸形。如果垂直軸線與總基圓半徑相同,并且基圓柱螺旋角之差等于交叉軸角的話,間隙減小到零并出現(xiàn)線接觸。傾斜軸線布置對(duì)接觸間隙產(chǎn)生額外影響。兩側(cè)平均間隙的數(shù)值在很大程度上與螺旋角無(wú)關(guān),但與兩齒輪的錐角相關(guān)。交叉軸線和30176。圖7給出了具有相同錐角交叉軸傳動(dòng)的斜面體齒輪副所出現(xiàn)的間隙。隨兩齒輪錐角和螺旋角不一致的增加,左右側(cè)間隙的不同程度也增加。圓柱齒輪左右側(cè)間隙與軸線交叉無(wú)關(guān)。4接觸分析和修形4. 1點(diǎn)接觸和間隙 在未修正齒輪傳動(dòng)中,由于軸線傾斜,通常僅有一點(diǎn)接觸。在主動(dòng)齒輪根部的接觸軌跡將小于齒頂?shù)慕佑|軌跡。因此,沿齒寬方向在齒頂和齒根處具有明顯不同的滑動(dòng)速度。對(duì)于傾斜軸布置而言,在輪齒嚙合處總存在另外的軸向滑動(dòng)。在交叉軸傳動(dòng)的斜面體齒輪上存在一滾動(dòng)軸。另外,工作壓力角在齒寬橫截面方向的改變也造成工作區(qū)域的扭曲。齒頂錐角小于齒根錐角時(shí),通常能在小端獲得有用的漸開(kāi)線,而在大端處有足夠齒頂間隙,這時(shí)大端的齒頂形狀并不太嚴(yán)重。當(dāng)一對(duì)齒輪的錐角大致相同時(shí)可獲得最大的可用齒寬。齒高愈高(為獲得較大的齒高變位量),理論可用齒寬愈窄。 (8)嚙合點(diǎn)Pa偏轉(zhuǎn)角度 (9)繞齒輪軸轉(zhuǎn)動(dòng),形成共軛點(diǎn)P。最后,在原始側(cè)生成半徑為rp和法向矢量為n的P1點(diǎn)。齒輪修形設(shè)計(jì)的目的是減小這些間隙以形成平坦而均勻的接觸。2. 2微觀幾何形狀 一對(duì)傘齒輪通常形成點(diǎn)狀接觸。由于幾何設(shè)計(jì)限制了根切和齒頂形狀,實(shí)際齒寬隨錐角增加而減小。齒頂角設(shè)計(jì)成這樣以使得頂端避免與被嚙合齒輪發(fā)生干涉,并獲得最大接觸區(qū)域。cosδ (l)橫向壓力角 左/右 (2)基圓直徑 左/右 (3) 左右側(cè)不同的基圓導(dǎo)致斜齒輪齒廓形狀的不均勻,圖3。結(jié)果形成了齒輪基圓尺寸。)[2]商用車(chē)輛的輸送齒輪箱(垃圾傾倒車(chē))AWD用自動(dòng)變速器[ 4],圖22齒輪幾何形狀2. 1 宏觀幾何形狀 簡(jiǎn)而言之,斜面體齒輪可看成是一個(gè)在齒寬橫截面上連續(xù)改變齒頂高修正的圓柱齒輪,如圖3。在過(guò)去的15年中,ZF公司已為錐齒輪開(kāi)發(fā)了多種應(yīng)用:輸出軸具有下傾角的船用變速[3]轉(zhuǎn)向器[1]機(jī)器人用小齒隙行星齒輪裝置(交叉軸角度1176。標(biāo)準(zhǔn)(諸如適用于圓柱齒輪的IS06336)、計(jì)算方法和強(qiáng)度值都是未知的。斜面體齒輪的幾何形狀是已知的,但它們很少應(yīng)用在動(dòng)力傳動(dòng)上。 圓錐齒輪是在齒寬橫截面上具有不同齒頂高修正(齒厚)量的直齒輪或斜齒輪。由于錐角的選擇并不取決于軸線交角,配對(duì)的齒輪也可能采用圓柱齒輪。),該齒輪的優(yōu)點(diǎn)是在制造、結(jié)構(gòu)特點(diǎn)和輸入多樣性等方而的簡(jiǎn)易。1前言在變速器中如果各軸
點(diǎn)擊復(fù)制文檔內(nèi)容
化學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1