【摘要】第十七章勾股定理勾股定理第1課時星期日老師帶領初二全體學生去凌峰山風景區(qū)游玩,同學們看到山勢險峻,查看景區(qū)示意圖得知:凌峰山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車路線,已知山底端C處與地面B處相距1200米,∠ACB=90°,請問纜車路線AB長應為多
2025-06-27 08:15
【摘要】勾股定理第1課時勾股定理(一)如果直角三角形的兩條直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.如圖,在△ABC中,∠C=90°.(1)若已知a,b,則斜邊c=;(2)若已知a,c,則b=;(3)若已知c,b,則a=.22
2025-06-18 12:25
【摘要】勾股定理第2課時a,b,斜邊為a2=()b2=()c2=()c2-b2c2-a2a2+b2ABCD中,寬AB為1m,長BC為2m,求AC長.1m2mACBD??2222125m
2025-06-19 05:55
【摘要】第十七章勾股定理勾股定理第1課時勾股定理的驗證勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a,b,c三條邊滿足的關系式是.a2+b2=c2知識點1:勾股定理的認識解:(1)A所代表的正方形的面積為144+81=225.(2)B所代表的正方形的面積為625-400=22
2025-06-22 15:03
【摘要】第十七章勾股定理勾股定理第1課時【基礎梳理】勾股定理1的小正方形,則正方形A的面積是__,正方形B的面積是___,正方形C的面積=邊長為7的正方形與4個直角邊為_____的直角三角形的面積差為___.9163和425a,b,斜邊長為c,那么___
2025-06-18 21:09
【摘要】勾股定理第3課時在數(shù)學中也有這樣一幅美麗的“海螺型”圖案由此可知,利用勾股定理,可以作出長為21146785101112139161819171415n1111111111111111第七屆國際
2025-06-24 06:04
2025-06-19 05:52
2025-06-18 12:36
2025-06-22 15:37
【摘要】第十七章 勾股定理 勾股定理第1課時 勾股定理:如果直角三角形的兩條直角邊長分別為a,b,斜邊長為c,那么 .?明勾股定理的常用方法: ,如“趙爽弦圖”等.積如圖所示,則面積為S的正方形的邊長是( ) ?a2+b2=c2
2025-06-24 12:26
2025-06-23 20:59
【摘要】第十七章 勾股定理 勾股定理第1課時 勾股定理的認識知識點1知識點2勾股定理的證明選項中,不能用來證明勾股定理的是(??D??)2.【教材延伸】如圖,“趙爽弦圖”是由四個全等的直角三角形拼成一個大的正方形,是我國古代數(shù)學的驕傲,巧妙地利用面積關系證明了勾股定理.已
2025-06-21 12:01
【摘要】勾股定理第1課時勾股定理及拼圖驗證第1課時勾股定理及拼圖驗證知識目標1.通過在方格紙中經(jīng)歷觀察、計算、歸納發(fā)現(xiàn)勾股定理,會用拼圖的方式驗證勾股定理.2.在理解勾股定理的基礎上,會利用勾股定理求圖形的邊長或面積.目標突破目標一勾股定理的驗證第1課時勾股定理及拼圖驗證圖
2025-06-18 12:11
【摘要】第2課時勾股定理(二),也可以表示,數(shù)軸上的點和.一一對應.(,,…)的點.如圖所示..有關銳角三角形或鈍角三角形的計算問題也可以轉化為含有三角形的計算問題,應用勾股定理加以解決,關鍵在于找出這個三角形.23無理數(shù)實數(shù)
2025-06-18 12:23
【摘要】勾股定理第2課時【基礎梳理】直角三角形中,根據(jù)勾股定理,已知兩邊可求第三邊:Rt△ABC中,∠C=90°,a,b,c分別為內角A,B,C的對邊,(1)若已知邊a,b,則c=;(2)若已知邊a,c,則b=;(3)若已知邊b,c,則a=.22ab?
2025-06-18 21:10