【摘要】第三章直線與方程知識點及典型例題1.直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°2.直線的斜率①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即k=tana。斜率反映直線
2025-06-25 05:08
【摘要】直線與圓方程例題(精華版)一.選擇題1.(09·湖南重點中學(xué)聯(lián)考)過定點??2,1P作直線l分別交x軸、y軸正向于A、B兩點,若使△ABC(O為坐標(biāo)原點)的面積最小,則l的方程是()
2025-01-15 04:58
【摘要】完美WORD格式《圓》章節(jié)知識點復(fù)習(xí)一、圓的概念集合形式的概念:1、圓可以看作是到定點的距離等于定長的點的集合;2、圓的外部:可以看作是到定點的距離大于定長的點的集合;3、圓的內(nèi)
2025-06-28 23:13
【摘要】......高中數(shù)學(xué)圓的方程典型例題類型一:圓的方程例1求過兩點、且圓心在直線上的圓的標(biāo)準(zhǔn)方程并判斷點與圓的關(guān)系.分析:欲求圓的標(biāo)準(zhǔn)方程,需求出圓心坐標(biāo)的圓的半徑的大小,而要判斷點與圓的位置關(guān)系,只須看點與圓心的距
2025-04-01 05:41
【摘要】資料圓與方程1.圓的標(biāo)準(zhǔn)方程:以點為圓心,為半徑的圓的標(biāo)準(zhǔn)方程是.特例:圓心在坐標(biāo)原點,半徑為的圓的方程是:.2.點與圓的位置關(guān)系:(1).設(shè)點到圓心的距離為d,圓半徑為r:d<r;d=r;d>r(2).給定點及圓.①在圓內(nèi)②在圓上③在圓外(3)涉及最值:1 圓外一點,
2025-07-30 06:25
【摘要】湖州市弘大培訓(xùn)學(xué)校圓與方程1.圓的標(biāo)準(zhǔn)方程:以點為圓心,為半徑的圓的標(biāo)準(zhǔn)方程是.特例:圓心在坐標(biāo)原點,半徑為的圓的方程是:.2.點與圓的位置關(guān)系:(1).設(shè)點到圓心的距離為d,圓半徑為r:d<r;d=r;d>r(2).給定點及圓.①在圓內(nèi)②在圓上③在圓外(3)涉及最值:1
2025-06-25 01:54
【摘要】圓的知識點總結(jié)(一)圓的有關(guān)性質(zhì)[知識歸納]?1.圓的有關(guān)概念:???圓、圓心、半徑、圓的內(nèi)部、圓的外部、同心圓、等圓;???弦、直徑、弦心距、弧、半圓、優(yōu)弧、劣弧、等弧、弓形、弓形的高;???圓的內(nèi)接三角形、三角形的外接圓、三角形的外心、圓內(nèi)
【摘要】圓的知識點總結(jié)(一)圓的有關(guān)性質(zhì)[知識歸納]?1.圓的有關(guān)概念:???圓、圓心、半徑、圓的內(nèi)部、圓的外部、同心圓、等圓;???弦、直徑、弦心距、弧、半圓、優(yōu)弧、劣弧、等弧、弓形、弓形的高;???圓的內(nèi)接三角形、三角形的外接圓、三角形的外心、
2025-07-31 00:12
【摘要】直線和圓的方程知識要點一、直線方程.1.直線的傾斜角:一條直線向上的方向與x軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時,其傾斜角為0,故直線傾斜角的范圍是.注:①當(dāng)或時,直線垂直于軸,它的斜率不存在.②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當(dāng)直線的斜率一定時,其傾斜角也對應(yīng)確定.2.直線
2025-07-31 22:10
【摘要】........《圓》章節(jié)知識點復(fù)習(xí)一、圓的概念集合形式的概念:1、圓可以看作是到定點的距離等于定長的點的集合;2、圓的外部:可以看作是到定點的距離大于定長的點的集合;3、圓的內(nèi)
2025-06-28 15:45
【摘要】..圓的對稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點D、E。求AB、AD的長。分析:求AB較簡單,求弦長AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點,且PA=4cm,OP=5
2025-08-11 04:44
【摘要】圓的對稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點D、E。求AB、AD的長。分析:求AB較簡單,求弦長AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點,且PA=4cm,OP=5cm,求⊙O的半徑。分析:⊙
2025-06-28 15:49
【摘要】輔導(dǎo)學(xué)案圓的基本性質(zhì)一、知識點梳理★知識點一:圓的定義及有關(guān)概念1、圓的定義:平面內(nèi)到定點的距離等于定長的所有點組成的圖形叫做圓。2、有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。圓上任意兩點間的部分叫做圓弧,簡稱弧。連接圓上任意兩點間的線段叫做弦,經(jīng)過圓心的弦叫做直徑,直徑是最長的弦。在同圓或等圓中,能夠重合的兩條弧叫做等弧?!?/span>
【摘要】第三章直線與方程【典型例題】題型一求直線的傾斜角與斜率設(shè)直線斜率為且則傾斜角的取值范圍拓展一三點共線問題例已知三點A(a,2)、B(3,7)、C(-2,-9a)在一條直線上,求實數(shù)a的值.例已知三點)在一條直線上,則拓展二與參數(shù)有關(guān)問題例已知兩點A(-2,-3),
2025-04-10 04:28
【摘要】鳳凰出版?zhèn)髅郊瘓F(tuán)版權(quán)所有網(wǎng)站地址:南京市湖南路1號B座808室聯(lián)系電話:025-83657815Mail:第12講直線與圓的方程及應(yīng)用解析幾何是江蘇高考必考題之一,它包含兩個C級考點,正常情況下,考一小(填空)一大(解答).小
2024-08-30 20:49