【摘要】高二數(shù)學(xué)教學(xué)設(shè)計(jì)——設(shè)計(jì)人:董永興教材分析:引入空間直角坐標(biāo)系,為學(xué)生學(xué)習(xí)立體幾何提供了新的方法和新的觀點(diǎn),為培養(yǎng)學(xué)生思維提供了更廣闊的空間,在學(xué)生學(xué)習(xí)了空間向量的幾何形式和運(yùn)算,以及基本定理的基礎(chǔ)上進(jìn)一步學(xué)習(xí)空間向量的坐標(biāo)運(yùn)算及其規(guī)律,是平面向量的坐標(biāo)運(yùn)算在空間推廣和拓展,為運(yùn)用向量坐標(biāo)運(yùn)算解
2025-04-22 12:24
【摘要】空間向量的坐標(biāo)運(yùn)算——空間直角坐標(biāo)系.空間向量的直角坐標(biāo)運(yùn)算.單位正交基底,空間直角坐標(biāo)系,向量的坐標(biāo)xyzO(x,y,z)ijkPP’OP=OP’+P’P=Xi+yj+zk啟示:空間向量OP=(x,y,z)Xiyjzk則),(2211
2024-08-29 01:22
【摘要】空間向量的坐標(biāo)運(yùn)算一.問(wèn)題情境四.課堂練習(xí)五.小結(jié)作業(yè)二.學(xué)生活動(dòng)三.?dāng)?shù)學(xué)應(yīng)用蘇教版選修1-1海安縣實(shí)驗(yàn)中學(xué)高二數(shù)學(xué)備課組1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)
2024-11-18 01:37
【摘要】空間向量的坐標(biāo)運(yùn)算(一)儋州市第一中學(xué)數(shù)學(xué)組吳應(yīng)杰空間向量的基本定理:如果三個(gè)向量不共面,那么對(duì)空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組x、y、z,使得:c,b,a???p?czbyaxp?????cba,,叫做空間的一個(gè)______基底空間任意三個(gè)不共面向
2024-10-25 13:31
【摘要】坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-26 11:25
【摘要】一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2024-11-25 13:01
【摘要】......向量的坐標(biāo)表示及其運(yùn)算【知識(shí)概要】1.向量及其表示1)向量:我們把既有大小又有方向的量叫向量(向量可以用一個(gè)小寫英文字母上面加箭頭來(lái)表示,如讀作向量,向量也可以用兩個(gè)大寫字母上面加箭
2025-07-06 20:33
【摘要】海鹽高級(jí)中學(xué)高新軍復(fù)習(xí)引入:?若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,則對(duì)于這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個(gè)單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問(wèn)題是:⑴向量的和、差、數(shù)乘、模的運(yùn)算
2024-08-18 06:24
【摘要】空間向量及其運(yùn)算共線向量定理共面向量定理0//aabbabb???對(duì)空間任意兩個(gè)向量、(),的充要條件是存在實(shí)數(shù),使=.,,,abpabxypxayb如果兩個(gè)向量不共線,則向量與向量共面的充要
2024-08-05 08:50
【摘要】OxyijaA(x,y)a兩者相同3.兩個(gè)向量相等的充要條件,利用坐標(biāo)如何表示?坐標(biāo)(x,y)一一對(duì)應(yīng)向量a1.以原點(diǎn)O為起點(diǎn)作OA=a,點(diǎn)A的位置由誰(shuí)確定?2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)有什么關(guān)系?由a唯一確定a=bx1=x2且y1=y2
2024-08-18 06:17
【摘要】課前探究學(xué)習(xí)課堂講練互動(dòng)活頁(yè)規(guī)范訓(xùn)練掌握空間向量夾角的概念及表示方法,掌握兩個(gè)向量的數(shù)量積概念、性質(zhì)和計(jì)算方法及運(yùn)算規(guī)律.掌握兩個(gè)向量的數(shù)量積的主要用途,會(huì)用它解決立體幾何中一些簡(jiǎn)單的問(wèn)題.空間向量的數(shù)量積運(yùn)算【課標(biāo)要求】【核心掃描】空間向量的數(shù)量積運(yùn)算.(重點(diǎn))利用空間向量的數(shù)量積求夾角及距離.(
2025-06-18 19:01
2024-11-26 12:14
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-20 17:25
【摘要】空間向量運(yùn)算的坐標(biāo)表示勉縣二中楊恒一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,,(),,,(a222111zyxbzyx????ba);,,(332211yxyxyx?????ba);,,(332211yxyxyx????a?);,,(111zyx?????ba;332211yxyxyx???ba//)
2024-11-25 23:48
【摘要】,p,xypxayb.abab如果兩個(gè)向量不共線,則向量與向量共面的充要條件是存在實(shí)數(shù)對(duì),,使=+共線向量定理:復(fù)習(xí):共面向量定理:0//a.abbabb???對(duì)空間任意兩個(gè)向量、(),的充要條件是
2025-06-18 19:02