【摘要】基本不等式應(yīng)用一:直接應(yīng)用求最值例1:求下列函數(shù)的值域(1)y=3x2+(2)y=x+解:(1)y=3x2+≥2=∴值域?yàn)閇,+∞)(2)當(dāng)x>0時(shí),y=x+≥2=2;當(dāng)x<0時(shí),y=x+=-(-x-)≤-2=-2∴值域?yàn)椋ǎ?,?]∪[2,+∞)二:湊項(xiàng)例2:已知,求函數(shù)的最大值。解:因,所以首先要“調(diào)整”符號(hào),又不是常數(shù)
2024-08-02 11:31
【摘要】應(yīng)用基本不等式求最值江西師大附中黃潤華一、復(fù)習(xí)回顧基本不等式:(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))2ababab???2222abab???22,,2abRabab???0,0,2ababab????已
2024-08-18 06:17
【摘要】......例談?dòng)没静坏仁角笞钪档乃拇蟛呗哉静坏仁剑ó?dāng)且僅當(dāng)時(shí)等號(hào)成立)是高中必修五《不等式》一章的重要內(nèi)容之一,也是高考??嫉闹匾R(shí)點(diǎn)。從本質(zhì)上看,基本不等式反映了兩個(gè)正數(shù)和與積之間的不等關(guān)系,所以在求取積的最值、和的最值當(dāng)中,基本不等式將會(huì)煥發(fā)出強(qiáng)大的生命力,它將會(huì)是解決最值問題的強(qiáng)有力工具。本文將結(jié)合幾個(gè)實(shí)例談?wù)勥\(yùn)用基
2025-07-03 07:18
【摘要】題型1 基本不等式正用a+b≥2例1:(1)函數(shù)f(x)=x+(x0)值域?yàn)開_______;函數(shù)f(x)=x+(x∈R)值域?yàn)開_______;(2)函數(shù)f(x)=x2+的值域?yàn)開_______.解析:(1)∵x0,x+≥2=2,∴f(x)(x0)值域?yàn)閇2,+∞);當(dāng)x∈R時(shí),f(x)值域?yàn)?-∞,-2]∪[2,+∞);(2)x2+=(x2
2024-08-18 04:52
【摘要】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識(shí)】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(4)當(dāng)且僅當(dāng)
2025-05-19 23:45
【摘要】基本不等式題型歸納【重點(diǎn)知識(shí)梳理】1.基本不等式:(1)基本不等式成立的條件:,.(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)時(shí),等號(hào)成立.2.幾個(gè)重要的不等式:(1)();(2)();(3)();(4)().3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè),,則的算術(shù)平均數(shù)為,幾何平均數(shù)為,基本不等式可敘述為兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).4.利用基本不等式求最值問題
2025-03-31 00:14
【摘要】第一篇:基本不等式與不等式基本證明 課時(shí)九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時(shí),關(guān)鍵在對(duì)已知條件的靈活...
2024-10-29 03:11
【摘要】§基本不等式2:2abab??(教學(xué)教案設(shè)計(jì))①各項(xiàng)皆為正數(shù);②和或積為定值;③注意等號(hào)成立的條件.利用基本不等式求最值時(shí),要注意條件已知x,y都是正數(shù),P,S是常數(shù).(1)xy=P?x+y≥2P(當(dāng)且僅當(dāng)x=y時(shí),取“=”號(hào)).(2)x+
2024-08-18 03:53
【摘要】......基本不等式及應(yīng)用一、考綱要求:.2.會(huì)用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號(hào)成立的條件≤a0,
2025-05-19 23:12
【摘要】基本不等式的綜合應(yīng)用基本不等式是人教版高中數(shù)學(xué)必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學(xué)們?cè)谑褂没静坏仁降倪^程中往往會(huì)遇到各種各樣的題型而覺得無從入手?,F(xiàn)結(jié)合教學(xué)中實(shí)際遇到的問題,淺談利用基本不等式求最值的各類題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡記為“和定積最大”(2)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡
2024-08-05 12:30
【摘要】合理應(yīng)用基本不等式求極值胡建斌一、≥型適用條件:恒量極小值條件:1、最短傳送時(shí)間如圖所示,一平直的傳送帶以速度v=2m/s勻速運(yùn)動(dòng),傳送帶把A處的工件運(yùn)送到B處,A、B相距L=10m,從A處把工件無初速地放到傳送帶上,經(jīng)過時(shí)間t=6s,能傳送到B處,欲用最短的時(shí)間把工件從A處運(yùn)送到B處,求傳送帶的運(yùn)行速度至少多大?解析:把A處的工件運(yùn)送到B處,要經(jīng)過先加速后勻速
2025-05-19 23:25
【摘要】基本不等式說課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說課稿,希望對(duì)大家有幫助! 基本不等式說課稿1尊敬的各位考官大家好,我是今天的X號(hào)考生,今天我說課...
2024-12-07 02:50
【摘要】......《不等式》的說課稿各位領(lǐng)導(dǎo)、老師們大家好:今天我說課的內(nèi)容是北師版數(shù)學(xué)高中教材必修五第三章第一二三節(jié),我將從八個(gè)方面(教材、學(xué)情、教學(xué)模式、教學(xué)設(shè)計(jì)、板書、評(píng)價(jià)、開發(fā)、得失,出示ppt)說我對(duì)此課的思考和
2025-04-23 00:22
【摘要】第一篇:基本不等式教案 基本不等式 【教學(xué)目標(biāo)】 1、掌握基本不等式,能正確應(yīng)用基本不等式的方法解決最值問題 2、用易錯(cuò)問題引入要研究的課題,通過實(shí)踐讓同學(xué)對(duì)基本不等式應(yīng)用的二個(gè)條件有進(jìn)一步的...
2024-10-28 11:37
【摘要】基本不等式學(xué)習(xí)目標(biāo)?學(xué)習(xí)目標(biāo):理解一元二次不等式的概念及其與二次函數(shù)、一元二次方程的關(guān)系。初步樹立“數(shù)形結(jié)合次函數(shù)、一元二次方程的關(guān)系。?學(xué)法指導(dǎo):發(fā)現(xiàn)、討論法;數(shù)形結(jié)合。”的觀念。掌握一元二次不等式的解法及步驟。?學(xué)習(xí)重點(diǎn)、難點(diǎn):一元二次不等式、二次函數(shù)、一元二次方程的關(guān)系;一元二次不等式的解法及
2024-12-01 11:40