【摘要】第3章線性方程組的解法問題綜述在自然科學與社會科學的研究中,常常需要求解線性代數(shù)方程組,這些方程組的系數(shù)矩陣大致分為兩種:一種是低階稠密矩陣(例如:階數(shù)大約為小于等于150),另一種是大型稀疏矩陣(即矩陣階數(shù)高且零元素較多)。在計算機上求解線性代數(shù)方程組AX=B的常用的數(shù)值解法:?1、
2024-08-28 23:09
【摘要】計算方法(力學系本科生)第三章線性方程組解法(SolutionforLinearAlgebraicEquations)§問題的提出第三章線性方程組解法n階線性方程組§問題的提出11112213311211222233221122
2024-08-18 15:22
【摘要】第六章非線性方程組的迭代解法非線性方程組的數(shù)值解法非線性方程組的Newton法非線性方程組的Newton法非線性方程組的不動點迭代法第六章非線性方程組的迭代解法第六章非線性方程組的迭代解法學習目標:第六章非線性方程組的迭代解法TnxfxfxfxF))()
2024-10-08 09:49
【摘要】2022/8/181解線性方程組的直接方法2022/8/182第五章解線性方程組的直接方法§引言?解線性方程組的兩類方法:直接法:經(jīng)過有限次運算后可求得方程組精確解的方法(不計舍入誤差)迭代法:從解的某個近似值出發(fā),通過構造一個無窮序列去逼近精確解的方法。(一般有限步內(nèi)得不到精確解)20
2024-08-03 10:44
【摘要】解線性方程組的直接方法的MATLAB程序解線性方程組的直接方法在這章中我們要學習線性方程組的直接法,特別是適合用數(shù)學軟件在計算機上求解的方法.方程組的逆矩陣解法及其MATLAB程序線性方程組有解的判定條件及其MATLAB程序判定線性方程組是否有解的MATLAB程序function[RA,RB,n]=jiepb(A,b)B
2024-09-03 12:40
【摘要】湖北民族學院理學院2016屆本科畢業(yè)論文(設計)線性方程組的求解方法及應用學生姓名:付世輝
2025-04-14 02:05
【摘要】線性方程組的求解中國青年政治學院鄭艷霞?使用建議:建議教師具備簡單的MATHMATICA使用知識。?課件使用學時:4學時?面向?qū)ο螅何目平?jīng)濟類本科生?目的:掌握線性方程組的知識點學習。為民主黨投票為共和黨投票為自由黨投票?????
2024-10-06 12:10
【摘要】第三章線性方程組的解法§2 作業(yè)講評2§引言§雅可比(Jacobi)迭代法§高斯-塞德爾(Gauss-Seidel)迭代法§超松馳迭代法§迭代法的收斂性§高斯消去法§高斯主元素消去法§3 作業(yè)講評3§三角分解法§追趕法
2024-08-30 03:33
【摘要】線性方程組的解法解線性方程組的迭代法IterativeMethodsforLinearSystemsJacobi迭代和Gauss-Seidel迭代迭代法的矩陣表示MatrixformoftheIterativeMethods線性方程組的解法在計算數(shù)學中占有極其重要的地位。線性方程組的解法大致分為迭代法與直接法
2024-08-20 11:23
【摘要】南昌工程學院畢業(yè)論文理學系(院)信息與計算科學專業(yè)畢業(yè)論文題目非線性方程組的數(shù)值算法研究學生姓名張浩浩
2025-05-21 14:29
【摘要】1第三章2線性方程組是線性代數(shù)中最重要最基本的內(nèi)容之一,是解決很多實際問題的的有力工具,在科學技術和經(jīng)濟管理的許多領域(如物理、化學、網(wǎng)絡理論、最優(yōu)化方法和投入產(chǎn)出模型等)中都有廣泛應用.第一章介紹的克萊姆法則只適用于求解方程個數(shù)與未知量個數(shù)相同,且系數(shù)行列式非零的線性方程組.本章研究一般線性
2025-05-18 14:25
【摘要】第一節(jié)矩陣矩陣概念的引入矩陣的定義小結第二章矩陣11112211211222221122nnnnnnnnnnaxaxaxbaxaxaxbaxaxaxb???????????
2024-08-18 10:12
【摘要】1分別用矩陣求逆、矩陣除法以及矩陣分解求線性方程的解。2下面是一個線性病態(tài)方程組:(1)求方程的解。(2)將方程右邊向量元素b3改為[::],再求解,并比較b3的變化和解的相對變化。(3)計算系數(shù)矩陣A和條件數(shù)并分析結論。解:1-1A=[2,3,5;3,7,4;1,-7,1];B=[10,3,5]X=A\B.'
2025-03-30 07:03
【摘要】常系數(shù)線性方程組基解矩陣的計算董治軍(巢湖學院數(shù)學系,安徽巢湖238000)摘要:微分方程組在工程技術中的應用時非常廣泛的,不少問題都歸結于它的求解問題,基解矩陣的存在和具體尋求是不同的兩回事,一般齊次線性微分方程組的基解矩陣是無法通過積分得到的,但當系數(shù)矩陣是常數(shù)矩陣時,可以通過方法求出基解矩陣,這時可利用矩陣指數(shù)t,給出基解矩陣的一般形式,本文針對應用最廣泛的常系數(shù)
2025-06-29 07:32
【摘要】第二章解線性方程組的直接法張紅梅自動化學院2021年3月—補充知識:定點數(shù)和浮點數(shù)計算機中的數(shù)除了整數(shù)之外,還有小數(shù)。如何確定小數(shù)點的位置呢?通常有兩種方法:一種是規(guī)定小數(shù)點位置固定不變,稱為定點數(shù)。另一種是小數(shù)點的位置不固定,可以浮動,稱為浮點數(shù)。在計算機中,通常用定點數(shù)表示整數(shù)和純小數(shù)
2024-10-25 00:00