【摘要】Chapter7數(shù)值積分與數(shù)值微分內(nèi)容提綱(Outline)?求積公式的代數(shù)精度?插值型求積公式?復(fù)化求積法為什么要數(shù)值積分?在微積分里,按Newton-Leibniz公式求定積分要求被積函數(shù)f(x)?有解析表達(dá)式;?
2024-11-01 17:58
【摘要】MATLAB@SDU1數(shù)值微積分以及數(shù)值分析MATLAB@SDU2數(shù)值微分?jǐn)?shù)值微分的實(shí)現(xiàn)兩種方式計(jì)算函數(shù)f(x)在給定點(diǎn)的數(shù)值導(dǎo)數(shù):者樣條函數(shù)2.利用數(shù)據(jù)的有限差分在MATLAB中,沒有直接提供求數(shù)值導(dǎo)數(shù)的函數(shù),只有計(jì)算向前差分的函數(shù)diff,其調(diào)用格式為:DX=diff(X):計(jì)算向量X的向前差
2025-05-11 18:17
【摘要】殘量?離散的最佳逼近問題問題的提法:ix()ifx2x1mx?mx1x1()fx2()fx1()mfx?()mfx已知在的函數(shù)表()fx[,]ab??0()njjx??是區(qū)間上的一個(gè)線性無關(guān)函數(shù)系[,]ab尋求函數(shù)0()()njj
2025-03-27 22:16
【摘要】2022/8/181第四章數(shù)值積分與數(shù)值微分2022/8/182?,3,2,1?k第四章數(shù)值積分與數(shù)值微分牛頓-柯特斯公式§復(fù)合求積法§龍貝格求積公式§高斯求積法§引言§2022/8/183
2024-08-14 13:33
【摘要】第4章數(shù)值積分與數(shù)值微分1數(shù)值積分的基本概念實(shí)際問題當(dāng)中常常需要計(jì)算定積分。在微積分中,我們熟知,牛頓—萊布尼茲公式是計(jì)算定積分的一種有效工具,在理論和實(shí)際計(jì)算上有很大作用。對(duì)定積分,若在區(qū)間上連續(xù),且的原函數(shù)為,則可計(jì)算定積分似乎問題已經(jīng)解決,其實(shí)不然。如1)是由測(cè)量或數(shù)值計(jì)算給出數(shù)據(jù)表時(shí),Newton-Leibnitz公式無法應(yīng)用。2)許多形式上很簡(jiǎn)單的函數(shù),
2024-09-05 01:55
【摘要】數(shù)值分析A第4章數(shù)值逼近與數(shù)值積分清華大學(xué)數(shù)學(xué)科學(xué)系基本內(nèi)容梯形公式和高斯公式。;四種插值方法:牛頓插值,拉格朗日插值,分段線性插值,三次樣條插值。?????0x1xnx0y1y求解插值問題的基本思路構(gòu)造一個(gè)(相對(duì)簡(jiǎn)單的)函數(shù)),(
2024-08-02 04:50
【摘要】數(shù)學(xué)系UniversityofScienceandTechnologyofChinaDEPARTMENTOFMATHEMATICS第二章數(shù)值微分和數(shù)值積分?jǐn)?shù)學(xué)系UniversityofScienceandTechnologyofChinaDEPARTMENTOFMATHEMATICS數(shù)值
2024-10-06 14:09
【摘要】習(xí)題課數(shù)值微分和數(shù)值積分用三點(diǎn)公式求在x=,,,f(x)的函數(shù)值如下所示xif(xi)2)1(1)(xxf??解:x0=,x1=,x2=;h=hxfxfxfxf2)()(4)(3)('2100????67
2024-08-08 01:37
【摘要】CHINAUNIVERSITYOFMININGANDTECHNOLOGY§2牛頓-柯特斯公式§3龍貝格求積法CH6數(shù)值積分與數(shù)值微分§1數(shù)值積分有關(guān)的基本概念§4高斯求積公式§5數(shù)值微分CHINAUNIVERSITYOFMINING
2024-12-14 00:43
【摘要】第二章數(shù)值積分.復(fù)化Simpson公式功能:利用復(fù)化Simpson公式計(jì)算被積函數(shù)f(x)在給定區(qū)間上的積分值-----------------------------------------functionS=FSimpson(f,a,b,n)%f:被積函數(shù)句柄%a,b:積分區(qū)間的兩個(gè)端點(diǎn)%n:子區(qū)間個(gè)數(shù)%S:用復(fù)化Simpson法求
2024-08-05 16:03
【摘要】第四章數(shù)值積分與微分《計(jì)算機(jī)數(shù)值方法》延安大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院第四章數(shù)值積分與微分《計(jì)算機(jī)數(shù)值方法》本章要點(diǎn):牛頓-柯特斯積分復(fù)合積分龍貝格積分高斯求積公式第四章數(shù)值積分與微分《計(jì)
2025-01-24 20:17
【摘要】《數(shù)值分析》實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)名稱使用matlab編寫數(shù)值計(jì)算程序?qū)嶒?yàn)時(shí)間**姓名**班級(jí)**學(xué)號(hào)**成績(jī)實(shí)驗(yàn)報(bào)告內(nèi)容要求:一、實(shí)驗(yàn)?zāi)康呐c內(nèi)容;二、算法描述(數(shù)學(xué)原理或設(shè)計(jì)思路、計(jì)算公式、計(jì)算步驟);三、程序代碼;四、數(shù)值結(jié)果;五、計(jì)算結(jié)果分析(如初值對(duì)結(jié)果的影響;不同方法的比較;該方法的特點(diǎn)和改進(jìn)等);六、實(shí)驗(yàn)中出現(xiàn)的問題,解決方法
【摘要】《數(shù)值分析》實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)名稱使用matlab編寫數(shù)值計(jì)算程序?qū)嶒?yàn)時(shí)間**姓名**班級(jí)**學(xué)號(hào)**成績(jī)實(shí)驗(yàn)報(bào)告內(nèi)容要求:一、實(shí)驗(yàn)?zāi)康呐c內(nèi)容;二、算法描述(數(shù)學(xué)原理或設(shè)計(jì)思路、計(jì)算公式、計(jì)算步驟);三、程序代碼;四、數(shù)值結(jié)果;五、計(jì)算結(jié)果分析(如初值對(duì)結(jié)果的影響;不同方法的比較
2025-01-12 06:51
【摘要】第四章數(shù)值積分與數(shù)值微分,使其代數(shù)精度盡量高,并指明所構(gòu)造出的求積公式所具有的代數(shù)精度:解:求解求積公式的代數(shù)精度時(shí),應(yīng)根據(jù)代數(shù)精度的定義,即求積公式對(duì)于次數(shù)不超過m的多項(xiàng)式均能準(zhǔn)確地成立,但對(duì)于m+1次多項(xiàng)式就不準(zhǔn)確成立,進(jìn)行驗(yàn)證性求解。(1)若令,則令,則令,則從而解得令,則故成立。令,則故此時(shí),
2025-06-30 21:25
【摘要】數(shù)值微積分引言在微分中,函數(shù)的導(dǎo)數(shù)是用極限來定義的,如果一個(gè)函數(shù)是以數(shù)值給出的離散形式,那么它的導(dǎo)數(shù)就無法用極限運(yùn)算方法求得,當(dāng)然也就更無法用求道方法去計(jì)算函數(shù)在某點(diǎn)處的導(dǎo)數(shù)。一般來說,函數(shù)的導(dǎo)數(shù)依然是一個(gè)函數(shù)。設(shè)函數(shù)f(x)的導(dǎo)數(shù)f′(x)=g(x),高等數(shù)學(xué)關(guān)心的是g(x)的形式和性質(zhì),而數(shù)值分析關(guān)心的問題是怎樣的計(jì)算g(x)在一串離散點(diǎn)X=(x1,x2,…xn)的近似
2025-01-19 16:35