【正文】
re in the turning of highstrength metals and alloys, although experiments are in progress to machine ceramics such as silicon nitride. SUMMARY Machinability is usually defined in terms of surface finish, tool life, force and power requirements, and chip control. Machinability of materials depends not only on their intrinsic properties and microstructure, but also on proper selection and control of process variables. 材料的可機(jī)加工性 一種材料的可機(jī)加工性通常以四種因素的方式定義: ( 1)、分的表面光潔性和表面完整性。 they can be difficult to machine. Tungsten is brittle, strong, and very abrasive, so its machinability is low, although it greatly improves at elevated temperatures. 5 Zirconium has good machinability. It requires a coolanttype cutting fluid, however, because of the explosion and fire. 3. Machinability of Various Materials Graphite is abrasive。 they require harder tool materials. Dimensional tolerance control may be a problem in machining aluminum, since it has a high thermal coefficient of expansion and a relatively low elastic modulus. Beryllium is similar to cast irons. Because it is more abrasive and toxic, though, it requires machining in a controlled environment. Cast gray irons are generally machinable but are. Free carbides in castings reduce their machinability and cause tool chipping or fracture, necessitating tools with high toughness. Nodular and malleable irons are machinable with hard tool materials. Cobaltbased alloys are abrasive and highly workhardening. They require sharp, abrasionresistant tool materials and low feeds and speeds. Wrought copper can be difficult to machine because of builtup edge formation, although cast copper alloys are easy to machine. Brasses are easy to machine, especially with the addition pf lead (leaded freemachining brass). Bronzes are more difficult to machine than brass. Magnesium is very easy to machine, with good surface finish and prolonged tool life. However care should be exercised because of its high rate of oxidation and the danger of fire (the element is pyrophoric). Molybdenum is ductile and workhardening, so it can produce poor surface finish. Sharp tools are necessary. Nickelbased alloys are workhardening, abrasive, and strong at high temperatures. Their machinability is similar to that of stainless steels. Tantalum is very workhardening, ductile, and soft. It produces a poor surface finish。 this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels. Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with builtup edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead of continuous stringy ones, thereby improving machinability. 2 Leaded Steels. A high percentage of lead in steels solidifies at the tip of m