【摘要】立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版1第六章不等式第講立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版2考點搜索●應(yīng)用均值不等式求最值●應(yīng)用不等式求范圍●不等式
2024-09-06 08:58
【摘要】立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版1第六章不等式第講(第一課時)立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版2考點搜索●一元一次不等式的解法●一元二次不等式的
【摘要】歡迎交流唯一QQ1294383109希望大家互相交流不等式一、選擇題1.“13x12”是“不等式|x-1|1成立”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件解析:選A.∵不等式|x-1|1的解集為(0,2),
2024-08-30 20:08
【摘要】【3年高考2年模擬】第3章不等式第一部分三年高考薈萃高考試題分類解析一、選擇題1.(2020天津文)設(shè)變量,xy滿足約束條件?????????????01042022xyxyx,則目標(biāo)函數(shù)32zxy??的最小值為()A.5?B.4?C.2?D.3
2024-08-28 14:54
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》審校:王偉教學(xué)目標(biāo)?推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應(yīng)用。?教學(xué)重點:?推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定
2024-11-17 03:52
【摘要】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【摘要】第3課時均值不等式1.均值不等式基礎(chǔ)知識梳理2.常用的幾個重要不等式(1)a2+b2≥(a,b∈R);(2)ab(a+b2)2(a,b∈R);(3)a2+b22(a+b2
2024-08-06 03:54
2024-08-17 10:01
2024-08-17 09:13
【摘要】第一篇:2013高考數(shù)學(xué)均值不等式專題 均值不等式歸納總結(jié) ab£(a+b 2)£2a+b 222(當(dāng)且僅當(dāng)a=b時等號成立) (1)當(dāng)兩個正數(shù)的積為定值時,可以求它們的和的最小值,當(dāng)兩個正...
2024-10-27 07:47
【摘要】課堂例題設(shè)計應(yīng)注重“低起點、高觀點、高目標(biāo)”——均值不等式復(fù)習(xí)課的例題設(shè)計XX省XX中學(xué)【理論指導(dǎo)】:“低起點、高觀點、高目標(biāo)”的指導(dǎo)方針?!暗推瘘c”要求:從基礎(chǔ)知識入手,即從能反映該學(xué)科領(lǐng)域最基本、最核心
2024-08-18 19:30
【摘要】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”)(4)當(dāng)且僅當(dāng)
2025-05-19 23:45
【摘要】第一篇:高三數(shù)學(xué)均值不等式 3eud教育網(wǎng)://百萬教學(xué)資源,完全免費,無須注冊,天天更新! 均值不等式教案 教學(xué)目標(biāo): 教學(xué)重點: 推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)...
2024-11-06 22:00
【摘要】均值不等式主講人:宋國鳴北京師范大學(xué)良鄉(xiāng)附屬中學(xué)中學(xué)數(shù)學(xué)高一新授課創(chuàng)設(shè)情境?校園內(nèi)有一個邊長分別為a和b的矩形花壇,以及三個正方形花壇,?①第一個正方形花壇與矩形花壇的周長相等,設(shè)它的邊長為;?②第二個正方形花壇與矩形花壇的面積相等,設(shè)它的邊長為;?③第三個正方形
2024-12-01 13:02
【摘要】第一篇:均值不等式應(yīng)用 均值不等式應(yīng)用 一.均值不等式 22a+b1.(1)若a,b?R,則a+b32ab(2)若a,b?R,則ab£a=b時取“=”)22 22.(1)若a,b?R*,則a+...
2024-11-05 18:14