freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

銀川市八年級數(shù)學(xué)試卷易錯易錯壓軸勾股定理選擇題練習(xí)題(附答案)-文庫吧資料

2025-04-05 03:43本頁面
  

【正文】 理以及對應(yīng)角度的關(guān)系來推導(dǎo)對應(yīng)選項的結(jié)論即可.【詳解】解:由AB=4可得AC=BC=4,則AE=3=DE,由勾股定理可得CD=2, ①正確;BD=42,②正確;由∠A=∠EDF=45176。是解題的關(guān)鍵,也是解決本題的突破口.11.C解析:C【分析】根據(jù)BD、CE分別是AC、AB邊上的高,推導(dǎo)出;再結(jié)合題意,可證明,由此可得,;再經(jīng)得,從而證明AF⊥AQ;最后由勾股定理得,從而得到,即可得到答案.【詳解】如圖,CE和BD相較于H∵BD、CE分別是AC、AB邊上的高∴, ∴ ∴ ∵ ∴ 又∵BQ=AC且CF=AB∴ ∴,,故B、D結(jié)論正確;∵ ∴ ∴∴AF⊥AQ故A結(jié)論正確;∵∴ ∵ ∴ ∴ 故選:C.【點睛】本題考查了全等三角形、直角三角形、勾股定理、三角形的高等知識;解題的關(guān)鍵是熟練掌握全等三角形、直角三角形、勾股定理、三角形的高的性質(zhì),從而完成求解.12.B解析:B【分析】由折疊的性質(zhì)得出AD=BD,設(shè)BD=x,則CD=8x,在Rt△ACD中根據(jù)勾股定理列方程即可得出答案.【詳解】解:∵將△ABC折疊,使點B與點A重合,折痕為DE,∴AD=BD,設(shè)BD=x,則CD=8x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8x)2=x2,解得x= ∴BD=.故選:B.【點睛】本題考查了翻折變換的性質(zhì)、勾股定理等知識,熟練掌握方程的思想方法是解題的關(guān)鍵.13.B解析:B【分析】竹子折斷后剛好構(gòu)成一直角三角形,設(shè)竹子折斷處離地面尺,則斜邊為尺,利用勾股定理解題即可.【詳解】解:設(shè)竹子折斷處離地面尺,則斜邊為尺,根據(jù)勾股定理得:.解得:,故選:.【點睛】此題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是利用題目信息構(gòu)造直角三角形,從而運用勾股定理解題.14.B解析:B【解析】【分析】如圖,連接BB′.根據(jù)折疊的性質(zhì)知△BB′E是等腰直角三角形,則BB′=BE.又B′E是BD的中垂線,則DB′=BB′.【詳解】∵四邊形ABCD是平行四邊形,BD=2,∴BE=BD=1.如圖2,連接BB′.根據(jù)折疊的性質(zhì)知,∠AEB=∠AEB′=45176。∴∠DEC+∠BED=90176。=135176?!螩DE=180176。+45176。∴∠F2DQ=∠DAE,在△DF2Q和△ADE中,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴當(dāng)點P從點E運動到點A時,點F運動的路徑長為12,故選:D.【點睛】此題主要考查等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),解題關(guān)鍵是作好輔助線.8.C解析:C【分析】將容器側(cè)面展開,建立A關(guān)于上邊沿的對稱點A’,根據(jù)兩點之間線段最短可知A’B的長度為最短路徑15,構(gòu)造直角三角形,依據(jù)勾股定理可以求出底面周長的一半,乘以2即為所求.【詳解】解:如圖,將容器側(cè)面展開,作A關(guān)于EF的對稱點,連接,則即為最短距離,根據(jù)題意:,.所以底面圓的周長為92=18cm.故選:C.【點睛】本題考查了平面展開——最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進(jìn)行計算是解題的關(guān)鍵.9.C解析:C【分析】根據(jù)為等腰三角形,分三種情況進(jìn)行討論,分別求出BP的長度,從而求出t值即可.【詳解】在中,①如圖,當(dāng)時,;②如圖,當(dāng)時,∵,∴,;③如圖,當(dāng)時,設(shè),則,∵在中,∴,解得:,∴,綜上所述,當(dāng)為等腰三角形時,或或.故選:C.【點睛】本題考查了勾股定理,等腰三角形的性質(zhì),注意分類討論.10.C解析:C【分析】根據(jù)AC=2AB,點D是AC的中點求出AB=CD,再根據(jù)△ADE是等腰直角三角形求出AE=DE,并求出∠BAE=∠CDE=135176。=90176。﹣30176。∠ADF2=60176。=90176?!唷螮DP=∠DFH,在△DPE和△FDH中,∴△DPE≌△FDH(AAS),∴FH=DE=3,∴點P從點E運動到點A時,點F運動的路徑為一條線段,此線段到BC的距離為3,當(dāng)點P在E點時,作等邊三角形DEF1,∠BDF1=30176。DP=DF,∴∠EDP+∠HDF=90176。過D點作DE′⊥AB,過點F作FH⊥BC于H,如圖所示:則BE′=BD=3,∴點E′與點E重合,∴∠BDE=30176。AD、BE為△ABC的兩條中線,且AD=2,BE=5,求AB的長.設(shè)AC=x,BC=y(tǒng),根據(jù)勾股定理得:在Rt△ACD中,x2+(y)2=(2)2,在Rt△BCE中,(x)2+y2=52,解之得,x=6,y=4,∴在Rt△ABC中, ,故選:D.【點睛】此題考查勾股定理的運用,在直角三角形中,已知兩條邊長時,可利用勾股定理求第三條邊的長度.6.D解析:D【分析】過點C作CH⊥AB,連接CD,根據(jù)等腰三角形的三線合一的性質(zhì)及勾股定理求出CH,再利用即可求出答案.【詳解】如圖,過點C作CH⊥AB,連接CD, ∵AC=BC,CH⊥AB,AB=8,∴AH=BH=4,∵AC=5,∴,∵,∴,∴,∴DE+DF=,故選:D.【點睛】此題考查等腰三角形三線合一的性質(zhì),勾股定理解直角三角形,根據(jù)題意得到的思路是解題的關(guān)鍵,依此作輔助線解決問題.7.D解析:D【分析】首
點擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1