freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

錦州市勾股定理選擇題(及答案)(4)-文庫吧資料

2025-04-05 03:36本頁面
  

【正文】 點睛】本題考查了勾股定理、實數(shù)與數(shù)軸,熟記定理并求出AB的長是解題的關鍵.19.A解析:A【解析】試題分析:剪拼如下圖:乙故選A考點:剪拼,面積不變性,二次方根20.D解析:D【解析】試題解析:當3和5都是直角邊時,第三邊長為:=;當5是斜邊長時,第三邊長為:=4.故選D.21.B解析:B【分析】由數(shù)軸上點表示的數(shù)為,點表示的數(shù)為1,得PA=2,根據(jù)勾股定理得,進而即可得到答案.【詳解】∵數(shù)軸上點表示的數(shù)為,點表示的數(shù)為1,∴PA=2,又∵l⊥PA, ∴,∵PB=PC=,∴數(shù)軸上點所表示的數(shù)為:.故選B.【點睛】本題主要考查數(shù)軸上點表示的數(shù)與勾股定理,掌握數(shù)軸上兩點之間的距離求法,是解題的關鍵.22.A解析:A【解析】試題解析:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90176。又∵∠A=90176。∴EQ∥BC,∴,.故選B.【點睛】本題考查了勾股定理、軸對稱中的最短路線問題以及平行線的性質(zhì),找出點C的對稱點E,及通過點E找到點P、Q的位置是解題的關鍵.12.B解析:B【解析】由題可知(ab)2+a2=(a+b)2,解得a=4b,所以直角三角形三邊分別為3b,4b,5b,當b=8時,4b=32,故選B.13.C解析:C【分析】先過點E作EG⊥CD于G,再判定△BCD、△ABD都是等腰直角三角形,并求得其邊長,最后利用等腰直角三角形,求得EG的長,進而得到△EDC的面積.【詳解】解:過點E作EG⊥CD于G,又∵CF平分∠BCD,BD⊥BC,∴BE=GE,在Rt△BCE和Rt△GCE中,∴Rt△BCE≌Rt△GCE,∴BC=GC,∵BD⊥BC,BD=BC,∴△BCD是等腰直角三角形,∴∠BDC=45176。即可得出EQ∥BC,進而可得出,代入數(shù)據(jù)即可得出EQ的長度,此題得解.【詳解】解:如圖所示,過點D作DE⊥AB于點E,過點E作EQ⊥AC于點Q,EQ交AD于點P,連接CP,此時PC+PQ=EQ是最小值,在Rt△ABC中,∠ACB=90176。是解題的關鍵,也是解決本題的突破口.8.C解析:C【分析】觀察圖形可知,小正方形的面積=大正方形的面積4個直角三角形的面積,利用已知 =21,大正方形的面積為13,可以得以直角三角形的面積,進而求出答案?!唷螪EC+∠BED=90176。=135176?!螩DE=180176。+45176。a,即2bc>a 2 ,∵(bc) 2 ≥0,∴b 2 +c 2 2bc≥0,b 2 +c 2 ≥2bc,∴b 2 +c 2 >a 2 ,∴一定為銳角,故選A.【點睛】本題考查了三角形三邊關系、完全平方公式、不等式的傳遞性、勾股定理等,題目較難,得出b 2 +c 2 >a 2 是解題的關鍵.3.D解析:D【解析】當一直角邊、斜邊為1和2時,第三邊==;當兩直角邊長為1和2時,第三邊==;故選:D.4.D解析:D【解析】【分析】根據(jù)菱形的對角線互相垂直平分可得AC⊥BD,再利用勾股定理列式求出AB,然后根據(jù)菱形的四條邊都相等列式計算即可得解.【詳解】解:∵四邊形ABCD是菱形,∴AC⊥BD,=3cm, 根據(jù)勾股定理得, ,所以,這個菱形的周長=45=20cm.故選:D.【點睛】本題考查了菱形的性質(zhì),勾股定理,主要利用了菱形的對角線互相垂直平分,需熟記.5.B解析:B【分析】由直角三角形的勾股定理以及正方形的面積公式不難發(fā)現(xiàn):a的面積等于1號的面積加上2號的面積,b的面積等于2號的面積加上3號的面積,c的面積等于3號的面積加上4號的面積,據(jù)此可以求出三個的面積之和.【詳解】利用勾股定理可得: ,∴ 故選B【點睛】本題主要考查勾股定理的應用,熟練掌握相關性質(zhì)定理是解題關鍵.6.D解析:D【分析】先根據(jù)等腰三角形的性質(zhì)得出是線段垂直平分線,再根據(jù)垂直平分線的性質(zhì)、兩點之間線段最短得出最小值為,最后根據(jù)垂線段最短、直角三角形的性質(zhì)得出BE的最小值即可得.【詳解】如圖,作,交AC于點E,∵AD平分∠BAC,∴∠BAD=∠CAD,是線段垂直平分線(等腰三角形的三線合一)由兩點之間線段最短得:當點共線時,最小,最小值為點都是動點隨點的運動而變化由垂線段最短得:當時,取得最小值在中,即的最小值為故選:D.【點睛】本題考查了等腰三角形的性質(zhì)、垂直平分線的性質(zhì)、兩點之間線段最短等知識點,利用兩點之間線段最短和垂線段最短確認的最小值是解題關鍵.
點擊復制文檔內(nèi)容
法律信息相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1