【摘要】圓周角和圓心角的關(guān)系(1)圓周角定理1、圓心角的定義?2、在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等頂點(diǎn)在圓心的角為圓心角一、舊知回顧:當(dāng)圓心角的頂點(diǎn)發(fā)生變化時(shí),這個(gè)角的位置有哪幾種情況?圓周角:像(圖二)這樣的角∠BAC我們稱為圓周角.OBC二、探索新知:
2024-08-05 05:53
【摘要】民樂縣第二中學(xué)王愛萍回顧與思考AOBN100o,1、如圖在⊙O中,∠AOB=100o,則AB的度數(shù)為______ANB的度數(shù)為______?!?60o在射門游戲中,球員射中球門的難易與他所處的位
2024-12-15 16:28
【摘要】九年級數(shù)學(xué)(下)第三章圓3.圓周角和圓心角的關(guān)系(2)圓周角定理11、一條弧所對的圓心角等于_______,所對的圓周角等于_______。2、一弦分圓成兩部分,其中一部分是另一部分的4倍,則這弦所對的圓周角度數(shù)為________________。33、如圖,在⊙O中,∠BAC=32
2024-08-14 17:24
【摘要】第28章圓第三節(jié)圓周角定理岷江東路學(xué)校王萍請你說一說:?答:頂點(diǎn)在圓心的角叫圓心角..OBC1.當(dāng)球員在B,D,E處射門時(shí),他所處的位置對球門AC分別形成三個(gè)張角∠ABC,∠ADC,∠AEC.BACDE生活實(shí)
2024-11-29 01:34
【摘要】1.在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、或中有一組是相等的,那么,所對應(yīng)的其余各組量都分別相等。2.在⊙O中的兩條弦AB和CD,ABCD,AB和CD的弦心距分別為OM和ON,則OM__________ON。3.已知:如圖,AB=AC,D為弧AB的中點(diǎn),G為弧AC中點(diǎn),求證:DE=FG。4.AB、CD是⊙O內(nèi)兩條弦,且
2025-03-31 00:01
【摘要】OABC圓周角和圓心角的關(guān)系頂點(diǎn)在圓心的角叫圓心角.,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。.OBC憶一憶若圓心角的頂點(diǎn)位置發(fā)生改變,可能出現(xiàn)哪些情形?·····想一想在射門游
【摘要】......知識點(diǎn)三:弧、弦、圓心角與圓周角1、圓心角定義:頂點(diǎn)在的角叫做圓心角2.在同圓或等圓中,弧、弦、圓心角之間的關(guān)系:兩個(gè)圓心角相等圓心角所對的弧(都是優(yōu)弧或都是劣弧)相等圓心角所對的弦相等3、一個(gè)角是
【摘要】圓周角和圓心角的練習(xí)題一、選擇題1.圓周角是24°,則它所對的弧是________A.12°;B.24°;C.36°;D.48°.2.在⊙O中,∠AOB=84°,則弦AB所對的圓周角是________A.42°;B.138°;C.84°;D.42°或138°.
【摘要】......ê1.()如圖,線段AB是⊙O的直徑,弦CD丄AB,∠CAB=20°,則∠AOD等于( ?。〢. 160° B.150° C.140° D. 120°考點(diǎn):
2025-06-25 01:55
【摘要】.BCAOA.OBCA.OBC.BC.2、(1)判別下列各圖形中的角是不是圓周角,并說明理由。(2)指出圖中的圓周角。圖中的圓周角是_∠OAB∠OBA∠OAC∠OCA∠BAC1、什么樣的角是圓周角?圓周
2024-12-01 10:44
【摘要】初中數(shù)學(xué)資源網(wǎng)華師大九年級數(shù)學(xué)(下)第23章圓.圓周角和圓心角的關(guān)系-圓周角定理初中數(shù)學(xué)資源網(wǎng)探究活動(dòng):有關(guān)圓周角的度數(shù)1.探究半圓或直徑所對的圓周角等于多少度?2.90°的圓周角所對的弦是否是直徑?線段AB是⊙O的直徑,點(diǎn)C是⊙O上任
2024-11-14 19:12
【摘要】ê1.()如圖,線段AB是⊙O的直徑,弦CD丄AB,∠CAB=20°,則∠AOD等于( )A. 160° B.150° C.140° D. 120°考點(diǎn): 圓周角定理;垂徑定理.菁優(yōu)網(wǎng)版權(quán)所有專題: 圓.分析: 利用垂徑定理得出=,進(jìn)而求出∠BOD=40°,再利用鄰補(bǔ)角的性質(zhì)得出答案.解答: 解:
2025-06-25 00:17
【摘要】......圓周角和圓心角的練習(xí)題一、選擇題1.圓周角是24°,則它所對的弧是________A.12°;B.24°;C.36°;D.48°.2.在⊙O中,
【摘要】圓周角和圓心角的關(guān)系教學(xué)設(shè)計(jì) 教學(xué)主題圓周角和圓心角的關(guān)系第一課時(shí)一、教材分析本節(jié)是北師大版九年級下冊第三章第4節(jié)《圓周角與圓心角的關(guān)系》第1課時(shí)的內(nèi)容,本課是在學(xué)生學(xué)習(xí)了圓的圓心,半徑,直徑,弦,弧,圓心角等概念以及圓的對稱性的基礎(chǔ)上,用推理論證的方法研究圓周角與圓心角關(guān)系。它在與圓有關(guān)推理、論證和計(jì)算中應(yīng)用廣泛,是本章重點(diǎn)內(nèi)容之一。另外通過對圓周角的學(xué)習(xí),
2024-07-31 01:05
【摘要】第三章圓3.圓周角和圓心角的關(guān)系(二)廣東省江門市新會(huì)華僑中學(xué)李小玲一、學(xué)生知識狀況分析學(xué)生的知識技能基礎(chǔ):學(xué)生在上一節(jié)的內(nèi)容中已掌握了圓心角的定義及圓心角的性質(zhì)。掌握了在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。在上一課時(shí)中,了解了同弧所對的圓周角和圓心角之間的關(guān)
2024-11-29 05:22