【摘要】第3章三角恒等變換3.1兩角和與差的三角函數(shù)3.兩角和與差的余弦思考:cos(α-β)=?有人認(rèn)為cos(α-β)=cosα-cosβ,對(duì)不對(duì)?令α=π3,β=-π6,則cos(α-β)=cosπ2=0,cosα-cosβ=cosπ3-
2024-12-13 03:40
2024-12-09 10:15
【摘要】第3章三角恒等變換兩角和與差的三角函數(shù)兩角和與差的余弦一、填空題1.cos15°的值是________.2.若cos(α-β)=13,則(sinα+sinβ)2+(cosα+cosβ)2=________.3.已知α、β均為銳角,且sinα=55,cosβ
【摘要】課題:兩角和與差的余弦班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】,體會(huì)向量與三角函數(shù)之間的關(guān)系;、求值、證明【課前預(yù)習(xí)】1.已知向量),(=),(=221,1yxbyxa,夾角為?,則?ba??==2.
2024-11-24 01:05
【摘要】3.兩角和與差的正弦上一節(jié)我們研究了兩角和與差的余弦,一個(gè)自然的想法是兩角和與差的正弦等于什么?即sin(α±β)=?本節(jié)我們就探索這樣的問題,并加以應(yīng)用.1.兩角差的正弦公式____________________________________,這個(gè)公式對(duì)任意α、β都成立.答案:sin(α
【摘要】3.兩角和與差的正切你能根據(jù)正切函數(shù)與正弦、余弦函數(shù)的關(guān)系,從C(α±β)、S(α±β)出發(fā),推導(dǎo)出用任意角α,β的正切表示tan(α+β)、tan(α-β)的公式嗎?1.公式T(α-β)是_____________________________________
【摘要】?jī)山呛团c差的余弦公式【學(xué)習(xí)目標(biāo)】1、理解向量法推導(dǎo)兩角和與差的余弦公式,并能初步運(yùn)用解決具體問題;2、應(yīng)用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見.【學(xué)習(xí)重點(diǎn)難點(diǎn)】向量法推導(dǎo)兩角和與差的余弦公式【學(xué)習(xí)過程】(一)預(yù)習(xí)指導(dǎo)探究cos(α+β)≠cosα+cosβ
【摘要】《兩角和與差的余弦》說課稿一、教材分析:㈠、地位和作用:兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,是正弦線、余弦線和誘導(dǎo)公式等知識(shí)的延伸,是后繼內(nèi)容二倍角公式、和差化積、積化和差公式的知識(shí)基礎(chǔ),對(duì)于三角變換、三角恒等式的證明和三角函數(shù)式的化簡(jiǎn)、求值等三角問題的解決有重要的支撐作用。本課時(shí)主要講授平面內(nèi)兩點(diǎn)間距離公式、兩角和與差的余弦
2024-12-12 01:49
【摘要】?jī)山遣畹挠嘞夜揭?、?dāng)α、β為銳角時(shí),cos(α-β)=cosαcosβ+sinαsinβ的向量證明方法.圖3證明:如圖3所示,在直角坐標(biāo)系中作單位圓O,并作角α與-β,設(shè)角α的終邊與單位圓交于點(diǎn)P1,-β角的終邊與單位圓交于點(diǎn)P2,則1OP=(cosα,sinα),2OP=(cosβ,sinβ),
2024-12-08 23:46
【摘要】?jī)山遣畹挠嘞夜街攸c(diǎn):兩角差的余弦公式的推導(dǎo)過程及應(yīng)用.難點(diǎn):公式的推導(dǎo)過程及應(yīng)用技巧.(1)兩角差的余弦公式是推導(dǎo)其他和(差)角公式的根源,誘導(dǎo)公式是兩角和與差的三角函數(shù)公式的特殊情況.兩角中若有的整數(shù)倍角,使用誘導(dǎo)公式會(huì)簡(jiǎn)化運(yùn)算,不需要再用兩角和與差的三角函數(shù)公式展開來計(jì)算.(2)兩角差的余弦公式不能按照分配律展開,
2024-12-09 06:46
【摘要】?jī)山遣畹挠嘞夜娇疾橹R(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難公式的簡(jiǎn)單運(yùn)用1、2、4給值求值問題56、8、9、11綜合應(yīng)用37、10、12131.化簡(jiǎn)cos(45°-α)cos(α+15°)-sin(45°-α)·si
2024-12-09 01:56
【摘要】?jī)山遣畹挠嘞夜?.下列式子中,正確的個(gè)數(shù)為()①cos(α-β)=cosα-cosβ;②cos??????π2+α=sinα;③cos(α-β)=cosαcosβ-sinαsinβ.A.0B.1C.2D.3解析:三個(gè)式子均不正確.
【摘要】(一)沈陽(yáng)二中數(shù)學(xué)組掌握用向量證明問題的方法.掌握兩角和與差的余弦公式.熟練應(yīng)用公式求值和證明及公式正,反兩方面的應(yīng)用.本節(jié)重點(diǎn)是應(yīng)用公式求值和證明.本節(jié)難點(diǎn)是公式的推導(dǎo).學(xué)習(xí)目標(biāo)自學(xué)提綱1、如何用α或β的正弦,余弦來表示α-β或α+β的余弦?2、兩角和與差的余弦公式是怎樣
2024-11-22 12:09
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)兩角差的余弦公式課時(shí)跟蹤檢測(cè)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難公式的簡(jiǎn)單運(yùn)用1、2、4給值求值問題56、8、9、11綜合應(yīng)用37、10、12131.化簡(jiǎn)cos(45°-α)cos(α+
2024-12-12 13:11
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)兩角差的余弦公式學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.下列式子中,正確的個(gè)數(shù)為()①cos(α-β)=cosα-cosβ;②cos??????π2+α=sinα;③cos(α-β)=cosαcosβ-sinαsinβ.A.0B.1
2024-12-12 13:12