【摘要】正弦函數(shù)、余弦函數(shù)的圖象考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難正、余弦函數(shù)的圖象1、2、4、59“五點(diǎn)法”作圖8、12正、余弦函數(shù)圖象的應(yīng)用3、67、10、11131.正弦函數(shù)y=sinx,x∈R的圖象的一條對稱軸是()A.x軸B.y
2024-11-23 23:26
【摘要】正弦函數(shù)、余弦函數(shù)的圖象1.用“五點(diǎn)法”作函數(shù)y=cos2x,x∈R的圖象時(shí),首先應(yīng)描出的五個(gè)點(diǎn)的橫坐標(biāo)是()A.0,π2,π,3π2,2πB.0,π4,π2,3π4,πC.0,π,2π,3π,4πD.0,π6,π3,π2,2π3解析:令2x=0
【摘要】課題正弦函數(shù)、余弦函數(shù)的圖象教學(xué)目標(biāo)知識(shí)與技能了解利用單位圓中的正弦線畫正弦曲線的方法過程與方法掌握“五點(diǎn)法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點(diǎn)法”作出簡單的正、余弦曲線.情感態(tài)度價(jià)值觀研究函數(shù)的性質(zhì)常常以圖象直觀為基礎(chǔ),通過觀察函數(shù)的圖象,從圖象的特征獲得函數(shù)的性質(zhì)是一個(gè)基本方法
【摘要】1.正弦函數(shù)、余弦函數(shù)的圖象【學(xué)習(xí)要求】1.了解利用單位圓中的正弦線畫正弦曲線的方法.2.掌握“五點(diǎn)法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點(diǎn)法”作出簡單的正、余弦曲線.3.理解正弦曲線與余弦曲線之間的聯(lián)系.【學(xué)法指導(dǎo)】1.研究函數(shù)的性質(zhì)常常以圖象直觀為基礎(chǔ),通過觀察函數(shù)的圖象,從圖象的特征獲得函數(shù)的性質(zhì)
【摘要】《正弦函數(shù)、余弦函數(shù)的圖象》教學(xué)反思本節(jié)課利用多媒體制作的課件,生動(dòng)形象的再現(xiàn)了三角函數(shù)線的平移和曲線的形成過程,規(guī)范作了作圖過程和步驟,并利用幻燈片展示了正弦函數(shù)和余弦函數(shù)圖象的變化過程,使學(xué)生能夠直觀感受到函數(shù)圖象的變化規(guī)律,在一定程度上很好的輔助了教學(xué)活動(dòng)。本節(jié)課設(shè)置了大量的學(xué)生活動(dòng)和師生互動(dòng)活動(dòng)?;顒?dòng)呈現(xiàn)的方式多樣性:有學(xué)生的思考
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)正弦函數(shù)、余弦函數(shù)的圖象學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.用“五點(diǎn)法”作函數(shù)y=cos2x,x∈R的圖象時(shí),首先應(yīng)描出的五個(gè)點(diǎn)的橫坐標(biāo)是()A.0,π2,π,3π2,2πB.0,π4,π2,3π4,πC.0,π,2π,3π,4π
2024-12-13 03:45
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)正弦函數(shù)、余弦函數(shù)的圖象課時(shí)跟蹤檢測新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難正、余弦函數(shù)的圖象1、2、4、59“五點(diǎn)法”作圖8、12正、余弦函數(shù)圖象的應(yīng)用3、67、10、11131.正弦函數(shù)y=sinx,x∈
【摘要】正弦函數(shù)、余弦函數(shù)的圖象重點(diǎn):“五點(diǎn)法”作正弦函數(shù)、余弦函數(shù)的圖象.難點(diǎn):正弦線平移轉(zhuǎn)化為正弦函數(shù)圖象上的點(diǎn);正弦函數(shù)與余弦函數(shù)圖象間的關(guān)系.一、用五點(diǎn)法作圖基本流程為:尋找角度→列表→描點(diǎn)→連線.例1.用“五點(diǎn)法”作出函數(shù)y=cos(x-π3)在一個(gè)周期內(nèi)的圖象.【思路點(diǎn)撥】本題利用“五點(diǎn)法”作圖的方法,
2024-11-23 20:39
【摘要】正弦函數(shù)、余弦函數(shù)的圖象一、備用習(xí)題“五點(diǎn)法”畫出下列函數(shù)的圖象:(1)y=2-sinx,x∈[0,2π];(2)y=21+sinx,x∈[0,2π].2x=cosx的解的個(gè)數(shù)為()12
【摘要】第一章三角函數(shù)三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象1.了解正弦函數(shù)、余弦函數(shù)的圖象.(重點(diǎn)、易混點(diǎn))2.會(huì)用“五點(diǎn)法”畫出正、余弦函數(shù)的圖象.(重點(diǎn))3.能利用正、余弦函數(shù)的圖象解簡單問題.(難點(diǎn))正弦函數(shù)、余弦函數(shù)的圖象函數(shù)y=sinxy=
2024-11-23 17:33
【摘要】§1.4三角函數(shù)的圖像與性質(zhì)§正弦函數(shù)、余弦函數(shù)的圖象【學(xué)習(xí)目標(biāo)、細(xì)解考綱】學(xué)會(huì)“五點(diǎn)法”與“幾何法”畫正弦函數(shù)圖象,會(huì)用“五點(diǎn)法”畫余弦函數(shù)圖象.【知識(shí)梳理、雙基再現(xiàn)】1.“五點(diǎn)法”作正弦函數(shù)圖象的五個(gè)點(diǎn)是______、______、______、______、______.2.“五點(diǎn)法”作余弦函
2024-12-04 13:51
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難三角函數(shù)的單調(diào)區(qū)間問題17三角函數(shù)的最值(值域)問題2、510、11比較大小問題39綜合問題4、68121.函數(shù)y=|sinx|的一個(gè)單調(diào)增區(qū)間是()A.??????-π4,π4
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)1.函數(shù)y=-cosx在區(qū)間??????-π2,π2上是()A.增函數(shù)B.減函數(shù)C.先減后增函數(shù)D.先增后減函數(shù)解析:結(jié)合函數(shù)在??????-π2,π2上的圖象可知C正確.答案:C2.已知函數(shù)y=3cos(π-x),則當(dāng)x=___________
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)一、近幾年三角函數(shù)知識(shí)的變動(dòng)情況三角函數(shù)一直是高中固定的傳統(tǒng)內(nèi)容,但近幾年對這部分內(nèi)容的具體要求變化較大.1998年4月21日,國家教育部專門調(diào)整了高中數(shù)學(xué)的部分教學(xué)內(nèi)容,其中的調(diào)整意見第(7)條為:“對三角函數(shù)中的和差化積、積化和差的8個(gè)公式,不要求記憶”.1998年全國高考數(shù)學(xué)卷中,已盡可能
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)(一)【學(xué)習(xí)要求】1.了解周期函數(shù)、周期、最小正周期的定義.2.會(huì)求函數(shù)y=Asin(ωx+φ)及y=Acos(ωx+φ)的周期.3.掌握函數(shù)y=sinx,y=cosx的奇偶性,會(huì)判斷簡單三角函數(shù)的奇偶性.【學(xué)法指導(dǎo)】1.在函數(shù)的周期定義中是對定義域中的每一個(gè)x值來說,對于個(gè)別的